Choke Inductors What They Are and What They Do
  Have you ever wondered how your phone stays charged or how your car radio delivers crystal-clear sound even on a bumpy road? The answer might lie in a tiny, unassuming component called a choke inductor. While they may not be the flashiest parts in your electronics, choke inductors are critical in ensuring smooth operation and clean power delivery across many devices. In this blog, we will look into the world of choke inductors and explain their function, work, and applications in everyday electronics.  What is a Choke Inductor?  A choke inductor, also commonly referred to as a choke coil inductor or simply a choke, is a passive electronic component that acts like a gatekeeper for electrical current. Unlike its cousin, the resistor, which dissipates energy as heat, a choke inductor manipulates the current flow based on its frequency. Here's the key difference:  Choke inductors: Block high-frequency alternating current (AC) while allowing direct current (DC) and lower-frequency AC to pass through.  Resistors: Resist all current frequencies, reducing the overall current flow and dissipating energy as heat.  This selective filtering property makes choke inductors essential components in various electronic circuits, ensuring clean power delivery and mitigating unwanted electrical noise.  How Does a Choke Inductor Work?  The magic behind choke inductors lies in their ability to generate a magnetic field when current flows through their coil. This magnetic field, in turn, opposes any changes in current. Here's a breakdown:  Current Flow: When current passes through the coil's wire, a magnetic field is generated around it.  Magnetic Field Opposition: According to Faraday's Law of electromagnetic induction, this magnetic field tries to resist changes in the current that created it.  Frequency Dependence: High-frequency AC signals involve rapid changes in the current direction. The opposing magnetic field substantially affects these rapid changes, making it more difficult for the high-frequency AC to pass through the choke.  DC and Low-Frequency AC: The changes in current are slower for direct current (DC) and lower-frequency AC. The opposing magnetic field has less impact, allowing these currents to pass through the choke with minimal hindrance.  Purpose of a Choke Inductor  Choke inductors offer a variety of functionalities in electronic circuits. Here are some of their essentialkey purposes:  Filtering: As mentioned, choke inductors filter out unwanted high-frequency noise from AC signals. This is crucial for ensuring clean power delivery and preventing interference with other components in the circuit.  Energy Storage: Choke inductors can store energy in their magnetic field when current flows through them. This stored energy can then be released back into the circuit when needed. This property is beneficial in circuits requiring power regulation or transient voltage suppression.  Voltage Regulation: Choke inductors can regulate circuit voltage levels with capacitors. By controlling the flow of current and the energy stored within the magnetic field, choke inductors help maintain a stable voltage output.  Types of Choke Inductors  While the basic operating principle remains the same, choke inductors come in various types based on their core material:  Air-Core Chokes: These chokes have an air core that offers low inductance (the ability to store energy magnetically) but works well at high frequencies. They are typically used in RF (radio frequency) circuits.  Iron-Core Chokes: Iron-core chokes provide higher inductance than air-core chokes, making them suitable for applications requiring more energy storage or filtering lower-frequency AC noise. However, they can suffer from core losses at higher frequencies.  Ferrite-Core Chokes: Ferrite is a ceramic material commonly used in choke inductors. It offers a good balance between inductance and core losses, making it a versatile choice for many applications, especially beneficial for high-frequency filtering applications.  Real-World Applications  Choke inductors are ubiquitous in various electronic devices:  Automotive Electronics: They play a vital role in power supplies for car audio systems, engine control units (ECUs), and other electronic components, filtering out noise and ensuring smooth operation.  Power Electronics: Choke inductors are essential in switch-mode power supplies, filtering out switching noise and regulating voltage for various electronic devices.  Radio Frequency (RF) Circuits: In RF circuits, choke inductors prevent unwanted signals from leaking out and interfering with other circuits. This ensures efficient signal transmission and reception.  Final Thoughts  Choke inductors are workhorses in electronics, silently ensuring clean power delivery, signal integrity, and protection from unwanted interference. By understanding their operating principles and various types, you gain valuable insight into the intricate workings of electronic circuits. Whether you're a seasoned engineer or an electronics enthusiast, appreciating the role of choke inductors empowers you to design and troubleshoot circuits more effectively.
Key word:
Release time:2024-05-24 13:26 reading:892 Continue reading>>
Nidec Machine Tool Launches Newly Developed, Compact & Powerful Universal Head - A Light, Thin, Short and Small Product Capable of Meeting Various Machining Needs
  - A Universal Head that is approximately 80% in size of conventional products but that still possesses industry-leading high-speed machining  - A Universal Head contributes to automated machining system and saves manpower of cast heavy duty cutting to high-precision mold finishing  Nidec Machine Tool Corporation (represented by Mr. Haruhiko Niitani, president, and headquartered in Ritto, Shiga Prefecture) (“Nidec Machine Tool” or the “Company”), a Nidec Group company, today announced the launch of a new universal head (UH), an attachment of the Company’s MVR series of double column type milling machine with five-face machining capability The UH boasted an industry-leading compactness, by making the size approximately 80%*1of the conventional products, while maintaining the spindle capability with high output and speed.  This small UH enables a better accessibility between the tool-and the workpiece, as well as finished-surface quality and high-efficiency machining under ideal machining conditions, and its “light, thin, short, and small” features contribute greatly to mold and other products’ manufacturing processes. This UH’s sale is going to start at the Company’s “Large Machine Preview Show” to be held in Ritto, Shiga Prefecture, on Friday, February 02.  While made compact to improve its tool-workpiece accessibility and motion range, this new UH has an inclined axis with an extended tool-holding projection, enabling a better accessibility with a workpiece and the use of short and small tools. Additionally, even in machining processes that require long tools, this UH’s stiffer main spindle makes possible a variety of machining, from rough to finish machining. Also, with the UH able to approach up to 220mm (8.6”) to the wall, thanks to an improved swing span and interference range, the interference area with a workpiece has become smaller, and it can perform the precision machining on small and thin works and deep corners.  To secure better efficiency, this UH has a spindle speed of 20-6,000min-1, a spindle motor output of 15kW/420min-1, and a spindle maximum torque of 341N·m, while enjoying shorter non-machining time based on faster indexing time of each axis, shorter machining time due to stiffer attachments, and other features to improve productivity. Furthermore, the UH, which can perform indexing per angular 1 degree even during high output, has a high degree of freedom in machining, and can capable of handling a wide range of works, from cast heavy duty cutting to high-precision mold finish machining.  This UH can be installed into the Company’s double column type milling machining with five-face machining capability, i.e., MVR·Ax and MVR·Hx. The machines already delivered to the customers are also capable to install the attachment with additional construction.  Nidec Machine Tool Corporation stays committed to making proposals to contribute to addressing manufacturing automation, manpower saving, and other issues in the fields of machinery business and total solutions including attachments and peripheral devices.
Key word:
Release time:2024-05-14 11:26 reading:1287 Continue reading>>
Nidec Precision Develops TapSense, the World’s Thinnest Linear Resonant Actuator
  Nidec Precision Corporation (“Nidec Precision” or the “Company”), a member of Nidec Corporation’s group companies, announced today that it has developed TapSense, the world’s thinnest linear resonant actuator*.  Nidec Precision’s TapSense  Nidec Precision developed TapSense, the world’s thinnest* 1.4mm-thick linear resonant actuator by utilizing its precision manufacturing technology that the Company has, since its foundation, nurtured in the camera industry – and by designing from scratch a magnetic circuit optimum for a thin actuator. TapSense realizes tablet and notebook PCs and other digital terminals that are thinner than their conventional models.  With its excellent responsiveness and vibration force, TapSense can reproduce a crisp click feeling, while recreating a variety of tactile feedback, including the feeling of dial control. Additionally, its high responsiveness makes TapSense easier to control than conventional linear resonant actuators.  The cumulative shipments of the Nidec Group’s vibration motors exceeded 1.5 billion units at the end of March 2024, and these motors produced by Nidec’s technologies which enable light, thin, short, and small form factors with high efficiency and ease of control are highly valued by our customers.  As a member of the world’s leading comprehensive motor manufacturer, Nidec Precision stays committed to proposing revolutionary solutions that contribute to realizing a comfortable society.  *Data, from Nidec Precision’s research, as of May 01, 2024
Key word:
Release time:2024-05-10 13:11 reading:1369 Continue reading>>
A solution for automotive gear shift switch based on Hangshun chip automotive grade MCU HK32A040C8T3
  Throughout the global development of passenger cars, automatic transmission has been widely adopted. Its simple and easy to learn, convenient and intelligent characteristics bring drivers a more comfortable driving experience, and also better adapt to urban traffic.  The implementation of the automatic shift function actually uses a gear shift switch instead of manual operation. The gear shift switch will control the shift fork and gear shift based on different engine speeds, vehicle speeds, and the driver's intention to press the accelerator. To achieve these automated operations, a shift switch requires a brain.  The Hangshun chip M0 series automotive grade MCU HK32A040C8T3 is such a "brain", applied in gear shift switch schemes. Its main function is to receive signals from the gear shift switch and convert these signals into electrical signals that can control the car's engine, transmission, and other parts, thereby simplifying driving operations and providing great convenience for the driver.  In the process of developing its new generation of electric vehicles, in order to ensure that the vehicle's performance, reliability, and safety reach the optimal level, after in-depth technical evaluation and multiple rounds of screening, Selis New Energy Vehicles finally chose a gear shift switch scheme based on the Hangshun chip HK32A040C8T3.  The Selis engineering team has conducted a rigorous review of the functional characteristics, processing speed, power consumption performance, environmental adaptability, and cost-effectiveness of the Hangshun HK32A040C8T3 MCU in multiple dimensions. Hangshun's MCU has successfully conquered the engineering team with its outstanding performance, especially in high reliability and strong anti-interference ability. In addition, HK32A040C8T3 has high integration and flexible peripheral interfaces, providing engineers with greater design freedom and optimization space, making the entire electronic control system more compact and efficient.  HK32A040 using ARM ® Cortex ®- M0 core, with a maximum operating frequency of 96MHz, built-in up to 124 Kbyte Flash and 10 Kbyte SRAM. By configuring the Flash controller registers, the remapping of interrupt vectors within the main Flash area can be achieved. And it supports traditional Flash Level 0/1/2 read-write protection and Flash code encryption (patented by Hangshun).  Strong scalability  32-bit ARM CPU architecture, good ecological environment  Rich peripheral resources to meet platform expansion  Multiple packaging options available for LQFP64, LQFP48, QFN32, and QFN28  high reliability  Car specification quality, compliant with AEC-Q100 Grade 1  Complies with ISO 9001 and IATFT 16949 quality management systems  Supports -40 ℃~125 ℃  High cost performance ratio  Equal performance/resources, with higher cost-effectiveness  Quality service  Complete ecological supporting facilities  15 years of design life, with a supply chain guarantee of over 15 years  The gear shift switch scheme based on the Hangshun Vehicle Class MCU HK32A040C8T3 has been successfully applied in the Sailis new energy vehicle, which not only improves the electronic control efficiency of the entire vehicle, but also achieves lower energy consumption and better user experience.  The Hangshun chip series vehicle grade MCU HK32A040 can be widely used in vehicle domain controllers, such as doors and windows, tail lights, wipers, anti-theft alarms, car keys, air conditioning, electric seats, etc.  Hangshun Chip adheres to the strategy of SoC+32-bit high-end MCU in automotive standards. In recent years, it has invested a large amount of research and development resources in the field of automotive electronics, committed to providing the market with higher reliability and more cost-effective automotive chip solutions, helping customers achieve a win-win situation in cost control and user experience.
Key word:
Release time:2024-05-09 11:48 reading:1358 Continue reading>>
Analogy Semi wins
How to recognize and prevent damage to circuit boards from overheating?
  Recognizing and preventing overheating damage to circuit boards is crucial for ensuring the reliability and longevity of electronic devices. Here are some guidelines to help you identify signs of overheating and prevent damage:  Recognizing PCB Overheating  Unusual Smells:  Sign: Burning or unusual odors.  Cause: Overheating components can release distinct smells due to solder or other materials reaching high temperatures.  Discoloration:  Sign: Darkened or discolored areas on the circuit board.  Cause: Excessive heat can lead to discoloration of the PCB or nearby components.  Visual Inspection:  Sign: Distorted or melted components.  Cause: Overheating can cause physical damage, such as distortion or melting of plastic or metal components.  Malfunctioning Components:  Sign: Erratic behavior, intermittent failures, or complete failures.  Cause: Overheating can damage or degrade electronic components, leading to malfunctions.  Preventing PCB Overheating  Proper Ventilation:  Action: Ensure that electronic devices have proper ventilation to dissipate heat.  Considerations: Adequate airflow and proper placement of components can prevent the buildup of heat.  Heat Sinks and Fans:  Action: Use heat sinks and fans to dissipate heat from critical components.  Considerations: Heat sinks absorb and transfer heat away from components, while fans increase airflow.  Thermal Design:  Action: Implement a proper thermal design for the circuit board.  Considerations: Distribute heat-generating components evenly, and use materials with good thermal conductivity.  Temperature Monitoring:  Action: Implement temperature monitoring systems.  Considerations: Use temperature sensors to monitor critical areas and trigger alarms or shutdown procedures if temperatures exceed safe limits.  Proper Component Selection:  Action: Choose components with appropriate power ratings and thermal characteristics.  Considerations: Select components that can handle the expected heat dissipation without exceeding their specified limits.  Controlled Ambient Conditions:  Action: Ensure that electronic devices are used within specified environmental conditions.  Considerations: High ambient temperatures can contribute to overheating; maintain the operating environment within recommended limits.  Regular Maintenance:  Action: Perform regular inspections and maintenance.  Considerations: Dust accumulation can impede airflow and contribute to overheating; clean devices periodically.  Optimized Power Supply:  Action: Use an optimized and stable power supply.  Considerations: Fluctuations or improper power supply can lead to increased heat generation; ensure stable and appropriate voltage levels.  By implementing these measures, you can both identify signs of overheating and take proactive steps to prevent damage to circuit boards in electronic devices.  What are the hazards of circuit board overheating ?  Circuit board overheating can lead to various hazards and adverse effects, potentially causing damage to electronic components, reducing the lifespan of devices, and posing safety risks. Here are some hazards associated with circuit board overheating:  • Component Damage:  Risk: Overheating can cause semiconductor devices, resistors, capacitors, and other electronic components to degrade or fail.  Consequence: Malfunctioning or damaged components can lead to device failures, data loss, or system instability.  • Reduced Lifespan:  Risk: Prolonged exposure to high temperatures can significantly reduce the lifespan of electronic components.  Consequence: Devices may experience premature failures, requiring more frequent replacements or repairs.  • Thermal Stress:  Risk: Rapid temperature changes or uneven heating can result in thermal stress on the circuit board and its components.  Consequence: Thermal stress may cause solder joints to crack or weaken, leading to intermittent connections or complete failures.  • Fire Hazard:  Risk: Overheating, especially in extreme cases, can pose a fire hazard.  Consequence: Ignition of flammable materials, such as PCB substrates, insulation, or nearby components, may lead to fire incidents.  • Data Loss:  Risk: Overheating can affect storage devices, including hard drives and solid-state drives.  Consequence: Critical data stored on the affected devices may become corrupted or permanently lost.  • Electromagnetic Interference (EMI):  Risk: Overheating can lead to increased electromagnetic interference.  Consequence: EMI may negatively impact the performance of nearby electronic devices or systems, leading to communication errors or malfunctions.  • Safety Risks:  Risk: Overheating can compromise the safety of electronic devices.  Consequence: Devices used in safety-critical applications, such as medical equipment or automotive systems, may experience failures that pose risks to users.  • Warranty Voidance:  Risk: Manufacturers often specify operating temperature ranges for electronic devices.  Consequence: Overheating may void warranties, leaving users responsible for repair or replacement costs.  • Environmental Impact:  Risk: Overheated devices may not comply with environmental regulations.  Consequence: The disposal of damaged or non-compliant electronic devices can contribute to environmental pollution.
Key word:
Release time:2024-04-28 10:00 reading:570 Continue reading>>
NOVOSENSE at Automotive World Korea 2024: Enabling Automakers to Create Smarter, Safer Vehicles
  NOVOSENSE Microelectronics, a global provider of highly robust & reliable analog and mixed signal chip, today announced it will demonstrate the newest additions to its solutions in automotive OBC/DC-DC, traction inverter, BMS, body control module, lighting and thermal management system at the Automotive World Korea from April 24 to 26 at booth D122 in COEX Hall B, Seoul. During exhibition, NOVOSENSE engineer will give presentation about its automotive solutions on April 25.  Empowering engineers' automotive system design with product innovation  NOVOSENSE will showcase how its innovative products can help automakers to develop smarter and safer automotive system:  To support the trends of multi-node, high-speed, and high-stability in-vehicle communication, NOVOSENSE's automotive-grade CAN SIC, NCA1462-Q1, can achieve a transmission rate of ≥8Mbps in a star network, and maintain good signal quality with high EMC performance and patented ringing suppression function.  More channels are integrated on a single LED driver chip to support the increasing number of LED beads. NOVOSENSE's LED driver integrates up to 24 channels on a single chip, supporting stronger current driving capability and complete circuit protection functions.  Thermal management systems are transitioning from distributed architectures to integrated architectures. NOVOSENSE's highly integrated small motor driver SoC, NSUC1610, realizes efficient, real-time control of motor applications by integrating an ARM core MCU, a 4-way half-bridge driver, and a LIN interface on a single chip. It is widely used in electronic expansion valves, AGS, and electronic air vents.  Proven record and automotive-qualified  Since the launch of its first automotive chip in 2016, NOVOSENSE has always adhered to the “Reliable & Robust” quality policy and implemented Automotive Electronics Council (AEC)’s standards throughout the whole process. With its forward-looking product layout, robust quality performance and proven delivery record, NOVOSENSE has been widely recognized: it obtained ASIL-D certification, the highest level of the TÜV Rheinland ISO 26262 Functional Safety Management System in 2021, and joined the AEC as a member of the Component Technical Committee in 2023.  With over 10 years’ semiconductor design & mass production experience, NOVOSENSE can offer about 1,800 chip products for sale, and automotive application accounts for about 30% of NOVOSENSE revenue in 2023. NOVOSENSE has built partnership with thousands customers worldwide, including many global automotive OEMs and Tier 1/Tier 2 suppliers.
Key word:
Release time:2024-04-25 11:39 reading:1637 Continue reading>>
ROHM Group Company SiCrystal and STMicroelectronics Expand Silicon Carbide Wafer Supply Agreement
  Kyoto, Japan and Geneva, Switzerland, April 22, 2024 – ROHM (TSE: 6963) and STMicroelectronics (NYSE: STM), a global semiconductor leader serving customers across the spectrum of electronics applications, announced today the expansion of the existing multi-year, long-term 150mm silicon carbide (SiC) substrate wafers supply agreement with SiCrystal, a ROHM group company. The new multi-year agreement governs the supply of larger volumes of SiC substrate wafers manufactured in Nuremberg, Germany, for a minimum expected value of $230 million.  Geoff West, EVP and Chief Procurement Officer, STMicroelectronics, commented “This expanded agreement with SiCrystal will bring additional volumes of 150mm SiC substrate wafers to support our devices manufacturing capacity ramp-up for automotive and industrial customers worldwide. It helps strengthen our supply chain resilience for future growth, with a balanced mix of in-house and commercial supply across regions”.  “SiCrystal is a group company of ROHM, a leading company of SiC, and has been manufacturing SiC substrate wafers for many years. We are very pleased to extend this supply agreement with our longstanding customer ST. We will continue to support our partner to expand SiC business by ramping up 150mm SiC substrate wafer quantities continuously and by always providing reliable quality”. said Dr. Robert Eckstein, President and CEO of SiCrystal, a ROHM group company.  Energy-efficient SiC power semiconductors enable electrification in the automotive and industrial sectors in a more sustainable way. By facilitating more efficient energy generation, distribution and storage, SiC supports the transition to cleaner mobility solutions, lower emissions industrial processes and a greener energy future, as well as more reliable power supplies for resource-intensive infrastructure like data centers dedicated to AI applications.  About STMicroelectronics  At ST, we are over 50,000 creators and makers of semiconductor technologies mastering the semiconductor supply chain with state-of-the-art manufacturing facilities. An integrated device manufacturer, we work with more than 200,000 customers and thousands of partners to design and build products, solutions, and ecosystems that address their challenges and opportunities, and the need to support a more sustainable world. Our technologies enable smarter mobility, more efficient power and energy management, and the wide-scale deployment of cloud-connected autonomous things. We are committed to achieving our goal to become carbon neutral on scope 1 and 2 and partially scope 3 by 2027.  Further information can be found at www.st.com .  About ROHM  Founded in 1958, ROHM provides ICs and discrete semiconductor devices characterized by outstanding quality and reliability for a broad range of markets, including automotive, industrial equipment and consumer market via its global development and sales network.  In the analog power field, ROHM proposes the suitable solution for each application with power devices such as SiC and driver ICs to maximize their performance, and peripheral components such as transistors, diodes, and resistors.  Further information on ROHM can be found at www.rohm.com .  About SiCrystal  SiCrystal, a ROHM group company, is one of the global market leaders for monocrystalline silicon carbide wafers. SiCrystal’s advanced semiconductor substrates provide the basis for the highly efficient use of electrical energy in electric vehicles, fast charging stations, renewable energies and in various fields of industrial applications.  Further information on SiCrystal can be found at www.sicrystal.de .
Key word:
Release time:2024-04-24 11:10 reading:1179 Continue reading>>
Nidec’s Motor for Battery-assisted Bicycles is Adopted for Use in Taiyo Yuden’s Regenerative System that Keeps Them Running for 1,000km per Charge
  Nidec Corporation (TSE: 6594; OTC US: NJDCY) (“Nidec” or the “Company”) today announced that a motor that it developed for regenerative system-based battery-assisted bicycles has been adopted for use in FEREMO™, the regenerative power assistance system*1 that Taiyo Yuden Co., Ltd. (“Taiyo Yuden”) produced keeps a bicycle running for up to 1,000km on a single charge*2  FEREMO™, the regenerative power-assisted system that Taiyo Yuden developed, uses its power-assisting motor as a generator when the person on a bicycle puts on the brake or has his/her feet off the pedals, to collect and reuse motion energy.  This feature enables FEREMO™ to enjoy a significantly longer per-charge running distance, or up to 1,000km, than conventional power-assisting systems. In addition, with speed suppressed while the regenerative system is on, one can ride a bicycle safely even on a downhill.  Nidec’s power-assisted bicycle motor installed in FEREMO™ was designed exclusively for the system. While conventional power-assisting systems merely engage in powered operation (i.e., driving a motor with battery-generated electricity), this new motor operates as a generator when a bicycle decelerates, engaging in regeneration (i.e., rotating a motor with external power to generate electricity). In comparison with the Company’s other existing motors, this latest model boasts 30% more regenerative electric power, which is an industry-leading power generation efficiency, to help FEREMO™ achieve the 1,000km travelling distance. Furthermore, unlike assistance-only motors, load is constantly on the motor, making it more durable, low-noise, and radiation-efficient than conventional models.  As the world’s leading comprehensive motor manufacturer, Nidec stays committed to developing products with its technologies to make light, thin, short, and small products, as well as productivity enhancement and control technologies; and to proposing, at an overwhelming speed, revolutionary solutions that contribute to the lives of people around the world.  *1: FEREMO™  are Taiyo Yuden Co., Ltd.’s registered trademark or trademark for use in Japan  *2. According to Taiyo Yuden’s prototype vehicle measurement patterns (eco mode: 1,000km; middle mode: 200km; and high mode: 100km) based on the Japanese Industrial Standards
Key word:
Release time:2024-04-23 11:47 reading:1380 Continue reading>>
Jiangsu Runic Technology Co., Ltd Honored with China IC Design Achievement Award & Selected in China Fabless100 List
  On March 29th, the award ceremony of "2024 China IC Design Achievement Award" organized by ASPENCORE was held in Zhangjiang Science Hall, Shanghai. Jiangsu Runic RS50XX series of low noise, high accuracy and ultra-low temperature-drift precision voltage references were awarded the Best Amplifier/Data Converter/Isolator of the Year in China IC Design Achievement Award.  Jiangsu Runic Technology Co., Ltd has been listed as one of the "Top 10 Analog Signal Chain Companies" for two consecutive years.  Jiangsu Runic Technology Co., Ltd as China's high-performance, high-quality analog/mixed-signal IC R&D and sales of high-tech semiconductor design company has been selected for two consecutive years in the China Fabless100 list of Top 10 analog signal chain companies, fully demonstrates Runic in the analog signal chain market area of technical strength and competitive advantage, and has been widely recognized by the industry.  The China IC Design Fabless 100 list is based on quantitative mathematical models, corporate public information, vendor questionnaires, and first-hand interviews by a team of AspenCore analysts, who carefully select the companies with the strongest overall strength and growth potential in China's IC design industry; the Top 10 companies are selected according to the category (each company is categorized into one category only); and the criteria for selecting the Top 10 companies in each category are as follows The selection criteria for each category of Top 10 companies are as follows:  Companies headquartered in mainland China and Hong Kong/Macau, but excluding Taiwan enterprises  Fabless companies only, IDM companies with fabs are excluded from screening  Self-developed and designed chip products have been mass-produced and have been put into commercial use or entered the supply chain of mainstream OEMs.  Owns a number of patents for Invention Technology, and has strong chip R&D and application design capabilities
Key word:
Release time:2024-04-10 13:24 reading:661 Continue reading>>

Turn to

/ 82

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
model brand To snap up
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code