一文了解芯片生产工艺流程

发布时间:2025-09-04 17:17
作者:AMEYA360
来源:网络
阅读量:1423

  在当今数字化的世界里,从智能手机、个人电脑到汽车和家用电器,几乎所有电子设备的核心都离不开一个微小而强大的部件——芯片,也称为集成电路(Integrated Circuit, IC)。它的制造过程是人类智慧和工程技术的结晶,其复杂和精确程度令人叹为观止。本文将带你走进神秘的芯片制造工厂(Fab),了解一粒沙子是如何经历“七十二变”,最终成为驱动我们现代生活的智能核心。

  整个芯片制造流程极其复杂,可以概括为三大阶段:硅片制造、晶圆厂前道工序(Front-End-of-Line, FEOL)、晶圆厂后道工序(Back-End-of-Line, BEOL),以及最后的封装与测试。

  第一阶段:基础构建 - 硅片制造

  万丈高楼平地起,芯片的“地基”是高纯度的硅片,也称为晶圆(Wafer)。

  1.原料提纯:芯片的起始原料是沙子(主要成分是二氧化硅 SiO₂)。沙子经过高温冶炼和化学方法,被提纯成纯度高达99.999999999%(9个9到11个9)的电子级多晶硅。这种纯度意味着每十亿个原子中,最多只允许有一个杂质原子。

  2.长晶与切割:将高纯度多晶硅放入石英坩埚中,在高温下熔化。然后,以一颗单晶硅的“籽晶”作为引导,通过精密的控制,缓慢地旋转并向上提拉,生长成一根巨大的、具有完美原子排列的圆柱形单晶硅锭(Ingot)。这个过程被称为“柴氏法”(Czochralski method)。

一文了解芯片生产工艺流程

  3.晶圆成型:接下来,巨大的单晶硅锭被用内部涂有金刚石的线锯精确地切割成厚度不足1毫米的薄片,这就是晶圆。之后,晶圆的边缘会被打磨成圆形,并在特定位置加工出缺口(Notch)或平边(Flat),用于在后续生产中定位。最后,晶圆片会经过化学机械抛光(CMP),使其表面达到原子级的平整和光滑,像镜面一样。

  第二阶段:核心构建 - 前道工序

  这是在晶圆上真正“雕刻”晶体管等纳米级元器件的过程,也是技术含量最高、最复杂的部分。整个过程在一个被称为“洁净室”(Cleanroom)的环境中进行,其洁净度比医院手术室还要高出数千甚至数万倍,以防止微尘颗粒影响芯片的良率。前道工序的核心是光刻(Photolithography),并辅以刻蚀、薄膜沉积和离子注入等步骤,循环往复,层层叠加。

一文了解芯片生产工艺流程

  1.薄膜沉积 (Deposition):首先,根据设计需要在晶圆表面生长或沉积一层特定的薄膜材料,例如二氧化硅(绝缘层)或氮化硅等。这可以通过热氧化(将晶圆置于高温氧气或水蒸气环境中)或化学气相沉积(CVD)等方法实现。

  2.涂胶 (Coating):在薄膜上均匀地旋涂一层对特定波长的光敏感的化学物质——光刻胶(Photoresist)。3.光刻 (Photolithography) / 曝光 (Exposure):这是整个芯片制造中最关键、最昂贵的步骤。它就像用投影仪和胶片“拍照”。

  4.掩膜版 (Mask/Reticle):首先,工程师会将设计好的芯片电路图案制作成一块高精度的石英玻璃板,这就是掩膜版。

  5.曝光:然后,用极紫外光(EUV)或深紫外光(DUV)作为光源,穿过掩膜版,将电路图案精确地投射到涂有光刻胶的晶圆表面。被光照射到的光刻胶会发生化学性质的改变。

  6.显影 (Development):用特定的化学溶剂清洗晶圆,被光(或未被光,取决于光刻胶是正性还是负性)照射过的光刻胶被溶解和去除,这样,掩膜版上的电路图案就“复印”到了光刻胶层上。

  7.刻蚀 (Etching):刻蚀就像是“雕刻”。以留下的光刻胶图案为保护层,使用化学气体(等离子体刻蚀)或液体(湿法刻蚀)剥离掉没有被光刻胶覆盖的薄膜区域,从而将电路图案永久地刻在下方的薄膜上。

  8.去除光刻胶:完成刻蚀后,用化学方法剥离掉剩余的光刻胶,晶圆上就留下了所需的第一层电路图案。

  9.离子注入 (Ion Implantation):为了改变特定区域硅的导电性能(形成N型或P型半导体),需要将预先选定的杂质原子(如硼、磷)加速到极高的能量,像子弹一样注入到晶圆的特定区域。这一步是制造晶体管“源极”和“漏极”的关键。上述“沉积-涂胶-曝光-显影-刻蚀-注入”的流程会重复几十甚至上百次,每一次都制作一层新的电路图案,层层叠加,最终在晶圆上构建出包含数十亿个晶体管的复杂三维结构。

  第三阶段:互联构建 - 后道工序

  如果说前道工序是在“盖房子”,那么后道工序就是在“铺设房子的水电管网和通信线路”。它负责制造金属导线,将前道工序中制作出的亿万个晶体管按照电路设计图连接起来,形成一个完整的电路网络。

  1.金属互连 (Metallization):这个过程通常采用“铜制程”(Copper Interconnect)。首先在晶圆表面沉积一层绝缘介质(通常是低k电介质,以减少信号延迟),然后通过光刻和刻蚀在介质上刻出沟槽(Trench)和通孔(Via)。

  2.电镀铜:接着,使用电化学沉积(ECD)的方法,将铜原子填充到这些沟槽和通孔中。

  3.化学机械抛光 (CMP):最后,再次使用CMP技术,将晶圆表面多余的铜磨平,只留下嵌入在绝缘介质中的铜导线。

一文了解芯片生产工艺流程

  这个过程同样需要重复多层,形成一个极其复杂的多层金属互连网络,确保信号可以在不同晶体管之间高速、准确地传输。

  第四阶段:封装与测试

  经过数百道工序后,一张晶圆上已经制造出了数百个完全相同的芯片单元,称为“裸片”(Die)。

  1.晶圆测试 (Wafer Probing):在将晶圆切割成单个芯片之前,会用带有数千根探针的测试机对每个裸片进行电学性能测试,筛选出不合格的产品。

  2.切割 (Dicing):用精密的金刚石刀轮沿着预设的切割道将晶圆切割成独立的裸片。

  3.封装 (Packaging):合格的裸片非常脆弱,无法直接焊接到电路板上。封装过程就是为裸片制作一个保护性的外壳,并引出管脚,以便与外部电路连接。

  4.贴片 (Die Attach):将裸片固定到封装基板(Substrate)上。

  5.引线键合 (Wire Bonding):用极细的金线或铜线,将裸片上的焊点(Pad)与封装基板上的引脚连接起来。更先进的技术如倒装芯片(Flip-chip)则通过微小的焊球(Bumps)直接连接。

  6.塑封 (Molding):用环氧树脂将整个结构包裹起来,形成我们最终看到的黑色芯片外观。

  7.最终测试 (Final Test):封装完成后,会对芯片进行全面的功能、性能和可靠性测试,确保其在各种工作条件下(如不同温度、电压)都能正常工作。只有通过所有测试的芯片,才会被打上型号和批次,送往电子产品制造商手中。

  从平凡的沙子到驱动信息时代的强大引擎,芯片的诞生是一段漫长而精密的旅程。它融合了物理、化学、光学、材料科学和精密机械等多个领域的顶尖技术。每一个环节的精度都以纳米(十亿分之一米)来衡量,任何一个微小的瑕疵都可能导致整个芯片的报废。正是这种对极致精密的追求,才使得人类能够不断突破计算能力的极限,创造出更加智能和便捷的未来。


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
全球首款1.8nm芯片来了!
习近平主席:我国芯片自主研发有了新突破!
  2025年12月31日晚7时,国家主席习近平通过中央广播电视总台和互联网,发表二〇二六年新年贺词。  贺词全文:  大家好!岁序更替,华章日新。在新年到来之际,我在北京向大家致以美好的祝福!  2025年是“十四五”收官之年。5年来,我们踔厉奋发、勇毅前行,克服重重困难挑战,圆满完成目标任务,在中国式现代化新征程上迈出了稳健步伐。我国经济总量连续跨越新关口,今年预计达到140万亿元,经济实力、科技实力、国防实力、综合国力跃上新台阶,绿水青山成为亮丽底色,人民群众获得感幸福感安全感不断增强。5年历程极不寻常,成绩来之不易。大家拼搏进取、耕耘奉献,铸就了欣欣向荣的中国。我向每一位辛勤付出的奋斗者致敬!  这一年,令人难忘的是,我们隆重纪念中国人民抗日战争暨世界反法西斯战争胜利80周年,设立台湾光复纪念日。国之盛典威武雄壮,胜利荣光永载史册,激励中华儿女铭记历史、缅怀先烈、珍爱和平、开创未来,凝聚起中华民族伟大复兴的磅礴伟力。  我们依靠创新为高质量发展赋能。科技与产业深度融合,创新成果竞相涌现,人工智能大模型你追我赶,芯片自主研发有了新突破,我国成为创新力上升最快的经济体之一。天问二号开启“追星”之旅,雅下水电工程开工建设,首艘电磁弹射型航母正式入列。人形机器人亮出“功夫模式”,无人机演绎绚丽“烟花”。创新创造催生了新质生产力,也让生活更加多姿多彩。  我们以文化滋养精神家园。文博热、非遗热不断升温,世界遗产再添新员,悟空和哪吒风靡全球,古韵国风成为年轻人眼中的“顶流审美”。文旅市场人气火爆,“城超”“村超”热闹非凡,冰雪运动点燃冬日激情。传统与现代交融,中华文化绽放更加灿烂的光芒。  我们共创共享美好生活。我到西藏、新疆出席庆祝活动,从雪域高原到天山南北,各族群众心手相连,像石榴籽一样紧紧抱在一起,大家用洁白的哈达、热情的歌舞,表达对祖国的热爱、对幸福的礼赞。民生无小事,枝叶总关情。过去一年,新就业群体权益有了进一步保障,适老化改造给老年人带来方便,育儿家庭每月多了300元补贴。柴米油盐、三餐四季,每个“小家”热气腾腾,中国这个“大家”就蒸蒸日上。  我们继续敞开胸怀拥抱世界。上合组织天津峰会、全球妇女峰会成功举办,海南自贸港全岛封关运作。为更好应对气候变化,我国宣布新一轮国家自主贡献。继“三大倡议”之后,我提出全球治理倡议,推动建设更加公正合理的全球治理体系。当今世界变乱交织,一些地区仍被战火笼罩。中国始终站在历史正确一边,愿同各国携手促进世界和平发展,推动构建人类命运共同体。  前不久,我出席了全运会开幕式,粤港澳三地同心同行,令人欣慰。要坚定不移贯彻“一国两制”方针,支持港澳更好融入国家发展大局,保持长期繁荣稳定。两岸同胞血浓于水,祖国统一的历史大势不可阻挡!  党兴方能国强。我们开展深入贯彻中央八项规定精神学习教育,徙木立信从严管党治党,去腐生肌推进自我革命,党风政风持续向好。要砥砺初心使命,持之以恒、久久为功,继续回答好延安“窑洞之问”,书写无愧于人民的时代答卷。  2026年是“十五五”开局之年。锐始者必图其终,成功者先计于始。我们要锚定目标任务,坚定信心、乘势而上,扎实推动高质量发展,进一步全面深化改革开放,推进全体人民共同富裕,续写中国奇迹新篇章。  山海寻梦,不觉其远;前路迢迢,阔步而行。让我们拿出跃马扬鞭的勇气,激发万马奔腾的活力,保持马不停蹄的干劲,一起为梦想奋斗、为幸福打拼,把宏伟愿景变成美好现实。  新年的旭日即将升起。祝祖国山河壮丽、大地丰饶,神州沐朝晖!祝大家心有所悦、业有所成,万事皆可期!
2026-01-04 16:10 阅读量:316
芯片Layout中的Guard Ring是什么?
  在芯片设计中,Guard Ring(保护环) 是一种环绕在敏感电路或器件(如模拟电路、高精度器件、存储器单元、I/O驱动器等)周围的版图结构,形成关键的“隔离带”。它的核心使命是提高电路的可靠性、性能和抗干扰能力,是复杂芯片(尤其是混合信号芯片、高可靠性芯片)成功量产的关键因素之一。  Guard Ring的物理构成  Guard Ring并非单一结构,而是由多个精心设计的物理组件协同构成:  1衬底接触环  采用高掺杂的P+区域(P型衬底)或N+区域(N型衬底/深N阱)。其核心作用是提供到半导体衬底的低阻连接。它能有效收集衬底中不需要的少数载流子,防止其干扰被保护电路,稳定衬底电位,减少衬底噪声耦合,并为潜在寄生电流提供泄放路径。  2阱接触环标题  采用高掺杂的N+区域(N阱)或P+区域(P阱)。它提供到阱的低阻连接点,稳定阱电位并收集阱中产生的少数载流子。在双阱工艺中,N阱接触环本身就能阻挡衬底中的少数载流子(空穴)进入N阱。  3隔离结构  通常指浅沟槽隔离或深沟槽隔离。它在物理上分隔保护环内外的区域,阻止表面漏电流路径,增加载流子从外部扩散进入保护区域的难度,是防止闩锁效应的关键物理屏障。  4连接线  通过通孔和金属层将衬底接触环和阱接触环连接到指定电位(VSS或VDD)。确保这些连接具有极低的电阻至关重要。  Guard Ring的核心作用  Guard Ring通过其物理结构实现多重关键保护功能:  1防止闩锁效应  这是Guard Ring最核心的作用。闩锁效应由芯片内部寄生的PNPN结构意外触发引发,可导致大电流、功能失效甚至芯片烧毁。Guard Ring通过提供低阻的阱和衬底接触,有效收集触发闩锁的寄生载流子,在其达到触发浓度前将其泄放。同时,隔离结构增加了载流子横向流动的阻力。它对包含NMOS和PMOS相邻放置的电路(如CMOS反相器、I/O驱动器)的保护尤为关键。  2抑制衬底噪声耦合  芯片上不同模块(尤其是数字模块与敏感的模拟/射频模块)工作时产生的噪声会通过公共硅衬底传播。连接到干净VSS的衬底接触环作为一个低阻抗的“汇”,能吸收和分流试图进入保护区域的衬底噪声电流,为被保护电路提供局部的“安静地”,显著降低噪声干扰。  3阻挡少数载流子注入  芯片某些区域(如开关状态的NMOS源/漏、反向偏置的PN结)可能向衬底注入少数载流子(电子或空穴)。这些载流子扩散到敏感区域(高阻节点、存储节点、精密基准源)会引发漏电流、电压偏移或数据错误。Guard Ring(尤其是反向偏置的阱接触环,如N阱环接VDD阻挡空穴)能收集这些扩散载流子,阻止其到达敏感区域。  4提高器件隔离度与可靠性  在需要高隔离度的应用(如RF电路、混合信号电路)中,Guard Ring有助于减少相邻器件间通过衬底的串扰。通过综合防止闩锁、减少噪声干扰和漏电流,Guard Ring显著提升了被保护电路的长期工作可靠性和稳定性。  设计与实现考量  Guard Ring的设计需结合具体工艺和电路需求:  必要性:为MOS器件提供衬底/阱电位(Bulk端)的Guard Ring是必不可少的。用于隔离噪声或防止Latch-up的Guard Ring则需评估实际需求(是否存在噪声源或对噪声敏感)。  结构选择:根据保护对象(PMOS/NMOS/DNW器件)选择对应的NWring、PSUBring或DNWring结构。其版图实现需严格遵循特定工艺的设计规则(Design Rule),例如有源区(AA/OD)与注入层(SP/PP/SN/NP)的包围关系、接触孔(CT/CONT)的尺寸和间距、金属层(M1)的连接等。  增强防护:有时会采用双层Guard Ring结构,以进一步降低阱/衬底的寄生电阻压降,增强隔离效果,更有效地降低Latch-up风险。  面积权衡:添加Guard Ring必然增加芯片面积。设计时必须在防护效果和成本(面积)之间进行仔细权衡。  Guard Ring是芯片版图设计中基础而关键的防护结构。其本质是通过在敏感电路周围精确构建阱接触环、衬底接触环和隔离结构,并将它们连接到合适的电源/地网络,共同形成一个高效的载流子收集阱和噪声隔离带。它从根本上防止了致命的闩锁效应,有效抑制了衬底噪声耦合,并阻挡了有害的少数载流子注入,从而极大提升了芯片的鲁棒性、性能和可靠性。
2025-10-30 14:49 阅读量:593
全球首款,我国芯片研制获重大突破!
  据《科技日报》报道,近日,清华大学电子工程系方璐教授团队在智能光子领域取得重大突破,成功研制出全球首款亚埃米级快照光谱成像芯片“玉衡”,标志着我国智能光子技术在高精度成像测量领域迈上新台阶。相关研究成果在线发表于学术期刊《自然》。  科研团队基于智能光子原理,创新提出可重构计算光学成像架构,将传统物理分光限制转化为光子调制与计算重建过程。通过挖掘随机干涉掩膜与铌酸锂材料的电光重构特性,团队实现高维光谱调制与高通量解调的协同计算,最终研制出“玉衡”芯片。“玉衡”光谱成像芯片概念图。图片来源:清华大学  “玉衡”芯片仅约2厘米×2厘米×0.5厘米,却可在400—1000纳米的宽光谱范围内,实现亚埃米级光谱分辨率、千万像素级空间分辨率的快照光谱成像,能在单次快照中同步获取全光谱与全空间信息,其快照光谱成像的分辨能力提升两个数量级,突破了光谱分辨率与成像通量无法兼得的长期瓶颈,为高分辨光谱成像开辟了新路径。  方璐表示,“玉衡”攻克了光谱成像系统的分辨率、效率与集成度难题,可广泛应用于机器智能、机载遥感、天文观测等领域,以天文观测为例,“玉衡”的快照式成像每秒可获取近万颗恒星的完整光谱,有望将银河系千亿颗恒星的光谱巡天周期从数千年缩短至十年以内,凭借微型化设计,它还可搭载于卫星,有望在数年内绘制出人类前所未有的宇宙光谱图景。
2025-10-16 14:25 阅读量:572
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码