优化电子设备导热,低成本量化碳吸收 : 脱碳环保,村田出新招!

发布时间:2024-09-25 14:50
作者:AMEYA360
来源:村田
阅读量:1251

  是否具有很好地支持脱碳和回收的环保性能,目前已成为人们决定购买商品和服务时的一个重要考虑因素。村田制作所正在利用积累的技术和知识,创建为实现可持续发展社会做贡献的新技术和新事业。

优化电子设备导热,低成本量化碳吸收 : 脱碳环保,村田出新招!

  村田在去年举办的“CEATEC 2023”上,就展示了两项新的脱碳环保技术成果:

  利用CO2传感器,简单低成本量化碳吸收,支持脱碳和海洋环境恢复;

  使用生物质材料的轻质导热材料,优化电子电气设备导热。

  CO2传感器:量化碳吸收

  目前,人们将可直接减少大气中CO2的自然界机制分为”绿碳“和”蓝碳“两种,森林中的树木吸收和储存的CO2被称作绿碳,蓝碳则是通过海藻和海草进行光合作用吸收并储存的CO2(下图)。

优化电子设备导热,低成本量化碳吸收 : 脱碳环保,村田出新招!

  蓝碳主要在被称为“海藻床”的海洋森林中被吸收和储存,那里生长着繁茂的海藻和海草。通过维护和扩大海藻床,可以增加蓝碳的吸收和储存量。此外,海藻床中还生活着多种多样的小鱼和海洋生物,保护海藻床,在增加蓝碳的同时恢复生物多样性。

  然而,迄今为止,人们却一直难以将蓝碳的吸收和储存量实现量化。蓝碳可以交易,但如何对吸收的CO2进行量化,还存在需要解决的课题!

  据村田制作所技术与事业开发本部 技术企划与新事业推进统括部的天白介绍,为了推动蓝碳生态系统的保护和扩大,日本制定了名为“J Blue Credit®认证”的制度,允许将在海藻床吸收的CO2量转化为经济价值并进行交易。争取实现脱碳目标的企业可以通过购买积分来对举措进行补充,而培育和管理海藻床的企业和团体能够通过出售积分来加快保护和扩大海藻床。J Blue Credit®可通过J Blue Credit - 日本蓝色经济技术研究协会(JBE)进行交易。申请积分时,需要对象海藻床吸收的CO2进行量化,但这项作业并不容易。

  目前,海藻床的CO2吸收量是通过无人机航拍和潜水员目视确认来调查海藻床面积和海藻种类,从而计算出来的,这需要很高的专业水平和调查成本。因此,很可能会导致通过积分获得的资金被调查用光、没有钱用于海藻床管理这种本末倒置的状况。

  村田的水下CO2传感器技术,可以便捷、低成本测量蓝碳的吸收量和储存量。据介绍,该技术基于村田现有产品——采用非色散型红外吸收法(Non-Dispersive InfraRed)方式、用于建筑物空调管理和农业温室的CO2浓度管理等的CO2传感器而开发的(图2)。该传感器不需要校准,可长期、准确、稳定地使用。但是,这是一种检测大气中CO2的传感器,无法检测溶解在水中的CO2。因此,村田通过添加从水中提取CO2的机构,成功开发出了水下CO2传感器。

优化电子设备导热,低成本量化碳吸收 : 脱碳环保,村田出新招!

  村田目前已经将该技术带到海藻床上验证其功能,并已确认它可以检测由于水下生态系统的光合作用而导致的CO2浓度因白天日照量变化而波动的情形。今后,村田制作所将积累与提高海藻床功能并有效扩大其面积的方法有关的知识,希望以这款传感器为起点,为生物多样性和海洋可视化做贡献。此外,我们还认为它可以用来帮助儿童和学生在环保教育中切实感受海藻床的作用。

  轻质导热材料:优化设备导热

  通常,在电气和电子设备中,通过让发热元件与设备的金属外壳接触以形成热传导路径并将热量释放到外部。但是,很难维持和确保稳定的接触点以便有效地散热,因此在发热元件和外壳之间填充基于树脂的导热材料以使其保持紧密接触。

  在高性能的电气和电子设备中,用于散热的导热材料多得出人意料。例如,在日益智能化的汽车领域,每辆车使用5至6kg的导热材料,并且今后还有继续增加的倾向。汽车制造商正在努力从元件材料层面开始减轻电动汽车(EV)的重量,以降低电动汽车的电力费用以及生产所耗电力时排放的CO2量。

  传统的导热材料采用氧化铝、氮化铝等相对较重的材料作为填料。村田制作所致力于开发的新型导热材料取代传统材料,据村田制作所技术与事业开发本部 材料技术中心 环境技术开发部的大西介绍,村田开发了一种更轻、热导率更高的新型导热填料,与传统材料相比,重量减轻了40%。

  导热材料一般是将具有导热作用的陶瓷等的颗粒(填料)用树脂硬化而成。村田对填料和树脂进行了改进,使用生物质材料的轻质导热材料是以生物质材料作为部分原料制成的新型轻质导热材料,有助于减轻对环境的影响,以进一步提高导热材料的环保性能。通过将其应用在半导体、电池等电气电子设备的发热部分与外部金属部分之间,可以提高散热效率并降低能耗。

优化电子设备导热,低成本量化碳吸收 : 脱碳环保,村田出新招!

  而且,传统的导热材料使用硅树脂作为树脂。然而,硅在废弃时,会被施以高温焚烧或填埋处理,废弃1kg的硅会产生约2kg的CO2。村田采用生物质材料作为树脂,将CO2的实质性排放量降到了零。生物质材料可以在500℃的较低温度下完全分解,并且可以通过将其与填料分离而容易地回收利用。

  此外,我们开发的新型导热材料有线膨胀系数比传统的硅小一个数量级的优点。在温度快速变化的环境中使用导热材料时,温度变化导致树脂反复膨胀和收缩,由此可能会导致发生填料分离的现象。使用新型导热材料可以防止这种现象的发生,提高电气和电子设备的可靠性并延长其寿命。

  村田技术创新DNA:助力脱碳环保

  村田为什么能成功开发出如此与众不同的新型导热材料?介入诸如水下传感应用这样的领域?

  村田开发的新型导热材料是通过应用我们在多层陶瓷电容器(MLCC)制造中积累的制作均质微粒材料并将其均匀分散的技术而产生的。可以说,正是因为有了村田的技术积累才实现了这种材料。我们开发的新型导热材料除了可用于汽车以外,还可以用到因高性能化而导致电子电路发热量增加的手机基站等多种领域。我们预计,需要散热材料轻量化和改进环保性能的电气和电子设备数量将越来越多。

  水下CO2传感器和使用生物质材料的轻质导热材料,让客户知道了如果利用村田迄今为止积累的技术和知识,就可能会从意想不到的角度诞生能为实现可持续发展做贡献的创新技术。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
活动预告 | 村田面向多种定位场景的高性能GNSS定位融合解决方案
2026-01-13 13:12 阅读量:305
村田:工业设备电磁噪声对无线通信的影响及EMC对策
  近年来,运用IoT、AI、机器人和5G等前沿技术的智能工厂在制造业迅速普及。这些技术创新提高了自动化程度,节省了人力,并提高了生产效率。  然而,随着从传统的有线控制向无线控制的转变,确保工厂内部稳定的无线通信已成为一个重要的课题。特别是工业机器人和控制设备产生的电磁噪声对Wi-Fi、LTE和5G等无线信号造成干扰,可能会导致严重的运行问题,例如:  生产设备误动作  因通信错误而导致生产线停工  随着智能工厂的发展,电气和电子设备不仅需要正常运行,而且还需具备不对其他设备造成电磁干扰且不受外部干扰的能力。应对这些EMC(Electromagnetic Compatibility,电磁兼容性)风险对于维持稳定且有效的运行不可或缺。  01 智能工厂电磁噪声来源  智能工厂中潜在的对无线通信产生威胁的电磁噪声很多。在现在的生产现场,同时运行着多种多样的工业机器人、电机和控制设备,会产生从低频到GHz频带的多种电磁噪声。  测量结果也表明,这些噪声频带与Wi-Fi(2.4GHz/5GHz)、LTE和5G等无线通信频带重叠。  因此,在智能工厂中经常出现无线设备接收灵敏度不足和通信出错并威胁到其稳定有效地运行的情况。  表1 无线通信标准的频带  02 智能工厂潜在EMC风险  智能制造环境中,电磁噪声会带来两大风险:“外部干扰”和“设备自身的自干扰”。  首先是外部电磁噪声导致的误动作风险。  在工厂内的实验中,在无噪声环境中仅观察到了LTE信号。然而,在实际的工厂环境中,人们已经确认:信号和电磁噪声水平接近,接收灵敏度下降量可能会达到18dB。  其次,工业机器人和控制设备可能会产生“自干扰”。  自干扰(Self-Interference)是指设备自身发射的电磁波干扰其自身运行的现象,特别是在工业机器人和控制设备等复杂系统中,这可能会导致性能不足或意外行为。  设备自身产生的电磁噪声干扰其自身的运行,特别是DC-DC转换器(将直流电压转换为其他直流电压的装置),人们已经确认:DC-DC转换器会成为噪声源,电缆和金属外壳充当天线,导致接收灵敏度降低量可能会达到13dB。  03 工业机器人的噪声对策  要应对工业机器人电磁噪声,首先我们来分析EMI的产生机理。  工业机器人由三个要素组成:驱动部分(机械臂)、控制部分(包含电路板和DC-DC转换器在内的金属外壳)以及连接两者的电缆。  对电磁噪声源的调查表明,DC-DC转换器是主要的噪声源。而且,已确认电缆和金属外壳会起到像天线一样的作用,向周围辐射噪声。  因此,EMC对策应以下面两点为中心:  遏制来自DC-DC转换器的电磁噪声  预防噪声通过电缆和外壳传播  这些对策对于维持智能工厂中的无线通信质量和稳定运行不可或缺。  04 从案例中学习噪声对策  我们通过工厂现场的接收灵敏度改进,从实际事例中学习总结了对应噪声对策。  在实际生产现场,通过将静噪滤波器(扼流圈)插入DC-DC转换器的输出DC线路,无线通信性能得到了显著改进。具体而言,机器人工作时的LTE下限接收灵敏度改进了约11dB。噪声允许值参考了通用标准IEC61000-6-3(住宅和商业环境)  该对策之所以有效,是因为DC-DC转换器产生的高频噪声被滤波器的阻抗特性反射并返回到转换器侧,从而预防了其泄漏到输出侧。  选择滤波器时,重要的是考虑频率特性和插入损耗(由于插入滤波器而导致的信号衰减)等因素。  在本事例中,我们使用了村田制作所的LQW18CAR16(1.6×0.8×0.8mm,额定电流为1.3A)。另一种选择是村田制作所的BLM系列(铁氧体磁珠电感器),然而,其电流叠加特性与LQW系列不同,因此,请根据所需的噪声消除性能进行选择。  村田建议  静噪滤波器LQW18CAR16:  尺寸:1.6×0.8×0.8mm  额定电流:1.3A  LQW18CAR16  05 EMC标准的新近动向  适用于工业设备和机器人的EMC标准“CISPR11第7版”于2024年2月发布。与上一版(第6.2版)相比,新增了1至6GHz的发射限值。  今后,需要在更宽的频带范围内采取电磁噪声对策并符合相关标准,因此,在现场和设计部门双方及时掌握新近信息并采取实用的对策不可或缺。  在本文中,对实用的电磁噪声对策的思考方法和EMC标准的新近动向进行了相关解说。如有任意疑问或希望讨论具体事例,请随时联系我们。  06 总 结  随着智能工厂的发展,电磁噪声问题预计将在生产现场日益凸显。因此,更加强有力的EMC(电磁兼容性)对策不可或缺。为了有效应对这一问题,以下举措至关重要:  对工厂内的电磁噪声环境进行评估;  在工业设备和机器人中实施电子元件级别的噪声对策(特别是针对DC-DC转换器、电缆和外壳的对策)。  其中,电子元件级别的噪声对策应该是特别优先的事项之一。这是因为它直接影响无线通信的稳定性和设备的可靠性,在现场进行实际应对不可或缺。
2026-01-13 13:03 阅读量:289
村田首款,1210英寸、额定电压1.25kV、静电容达15nF的汽车用陶瓷电容器
  株式会社村田制作所初次*开发并开始量产了1210英寸(3.2×2.5mm)尺寸、额定电压1.25kV、具备C0G特性的、15nF静电容量的多层片式陶瓷电容器。该产品可用于车载充电器(OBC)及高性能民用电子设备的电源电路,有助于实现高效率的电力变换,并在高电压条件下稳定运行。(*由村田调查得出,截至2025年12月1日。)  主要特点  在1210英寸(3.2×2.5mm)尺寸、额定电压1.25kV且具备C0G特性的前提下,实现了15nF特大静电容量的多层片式陶瓷电容器。  1.25kV高耐压,适配SiC MOSFET。  C0G特性带来低损耗与稳定的电容值。  车载充电器(OBC)安装于电动汽车(EV)上,从外部电源为车载电池充电的装置。在电动汽车搭载的车载充电器以及民用设备的电源电路中,通常会包含用于高效电力变换的谐振电路,以及用于遏制电流、电压峰值的缓冲(吸收)电路。由于这两类电路中高电压与大电流反复作用,元件性能的轻微变化就可能导致效率下降、设备发热,进而可能引发工作异常或故障。因此,市场亟需具备在温度变化下性能稳定、损耗低且能承受高电压的电容器。  近年来,电源电路中的开关器件正从Si MOSFET向能够实现更高效率与高速开关的SiC MOSFET转移。开关半导体器件以高速对电流进行通断控制,实现电压与频率变换的,Si MOSFET采用硅半导体的电力控制用开关器件,多用于低至中耐压场景。SiC MOSFET是采用碳化硅的高耐压、高效率电力控制用开关器件,多用于超过1.2kV的场景,通常要求1.2kV的耐压规格,因此对额定电压高于该水平的电容器需求在增加。  为此,村田通过特有的陶瓷材料与内部电极薄层化技术,首次在1210英寸尺寸实现了额定电压1.25kV、具备C0G特性、静电容量为15nF的本产品,并已开始量产。借助C0G特性的低损耗及电容随温度变化的稳定性,本产品适用于谐振电路与缓冲(吸收)电路。
2026-01-07 10:25 阅读量:374
高绝缘、低漏电、高可靠!村田新一代DC-DC转换器,是如何做到的?
  在医疗、工业与能源领域,设备对电源性能与可靠性的要求日益提高。无论是工业和能源中的储能系统、可再生能源设施,还是直接接触人体的医疗设备,这些高性能应用都依赖具备高绝缘性与高可靠性的DC-DC转换器,以保障电子设备更高效、稳定地运行。  村田针对高性能市场,推出了新一代表面贴装型小型化DC-DC转换器“NXJ1T系列”。该产品具有4.2kV DC高绝缘耐压、低漏电流及高可靠性。  NXJ1T系列主要特性  高绝缘性能、低漏电流设计及高可靠性:有助于提高应用场景的可靠性和安全性。  效率提升:实现了约80%的效率,并且支持低开关频率(500kHz至2MHz)。  小型化设计:尺寸为13.70mm(L)*10.55mm(W)*4.04mm(H),有助于节省设备空间。  符合与安全和医疗相关的标准:本产品支持UL62368和2ANSI/AAMI ES60601-1。  高绝缘、低漏电、高可靠:如何做到?  村田的这款新一代DC-DC转换器,是怎么做到高绝缘、低漏电、高可靠的呢?  首先,NXJ1T系列具有高绝缘耐压优势,一个主要原因是其得益于村田专有的封装制造技术。  这款小型化表面贴装型的DC-DC转换器,采用了村田专有的创新绕组技术”Block Coil“,在紧凑的封装内实现高隔离耐压,即使开关或控制器发生故障,也能形成隔离屏障,从而实现了出众的热性能、机械性能和绝缘性能,加强了产品的安全性。村田专有的创新绕组技术”Block Coil“,在紧凑的封装内实现高隔离耐压  传统的DC-DC转换器采用隔离材料形成隔离屏障,树脂灌封层内部的微小局部放电可能导致微孔的形成,这些微孔随着时间的推移而聚结,导致隔离屏障的永久性击穿,从而使任意的高压放电都能够从输出端传导到输入端,反之亦然。  这款新型转换器模塑封装所采用的实心隔离材料,具有远超传统转换器好几倍的局部放电耐受能力。即使发生放电,依然能够维持隔离屏障的完整性,有效遏制微孔的产生。  其次,传统的DC-DC转换器通常采用双绞线绕制的变压器,线圈间距较近,容易导致较高的电容耦合。这意味着输出侧开关产生的任意噪声都可能被反射至输入电路。这可能导致控制电路出现误触发,从而需要使用更多的滤波元件,进而增加成本。  而这款新型转换器内的变压器则采用实心骨架上的独立绕组,可实现行业内居先的低绕组间容抗,形成高频隔音屏障,其共模瞬态抗扰度(CMTI)超过200kV/uS。  通过村田专有的封装技术,NXJ1T实现了更优的热性能表现,产品能够承受1,000次以上的-40°C至125°C的温度循环测试。更强的热循环表现能够使其具有更长的使用寿命。  此外,NXJ1T系列的封装能预防粉尘和细小颗粒侵入,保护内部器件及电路,确保更高的可靠性。因此,能够应对从工业和能源领域到医疗领域的大量应用。  需要进一步指出的是,这些性能优势都得以集成在这个行业标准封装中。NXJ1T采用符合行业标准的封装尺寸,且向后兼容现有的表面贴装方案,不需要变更设计即可实现更强的性能。
2025-12-22 11:34 阅读量:353
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
型号 品牌 抢购
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码