村田:使用SiC/GaN功率半导体,提高功率转换效率,无源元件的技术进步很重要!

发布时间:2023-12-06 16:22
作者:AMEYA360
来源:村田
阅读量:2519

  世界各国政府以及各行各业的企业正在共同努力,推进迈向碳中和的举措。人们正在从能够想到的多个角度实施脱碳措施,例如使用太阳能发电等可再生能源,让迄今为止燃烧化石燃料的设备实现电气化,降低家用电器、IT设备和工业电机等现有设备的功耗等等。随着越来越多的脱碳举措得到实施,有一个半导体领域的技术创新正在迅速加速。它就是功率半导体。

村田:使用SiC/GaN功率半导体,提高功率转换效率,无源元件的技术进步很重要!

  各个国家和地区已经开始将碳定价机制作为制度引入,以将与业务活动相关的温室气体排放转嫁到成本。因此,脱碳举措不仅具有为社会做贡献的重要意义,而且会对企业经营的成绩单——财务报表也会产生明显的数字影响。

  脱碳举措对电子行业产生深远的影响,催生出势不可挡的新一轮半导体技术更替和成长,特别是在功率半导体领域,以碳化硅(SiC)和氮化镓(GaN)等宽禁带材料替代传统硅基器件。

  人类为了能在未来减少温室气体排放,时隔半个世纪,半导体材料正面临全面变革!

  进一步降低功耗,硅基器件遭遇瓶颈

  功率半导体是起到对电气和电子设备运行所需的电力进行管理、控制和转换作用的半导体元件。它被嵌入功率电子电路当中,这些电路包括为家用电器和IT设备稳定提供驱动电力的电源电路、无浪费地传输和分配电力的电力转换电路以及通过可自由控制的扭矩和转速高效率地驱动电机的电路等。

  功率半导体有MOSFET、IGBT、二极管等各种元件结构,根据用途分别使用。其中,

  MOSFET(Metal Oxide Semiconductor Field Effect Transistor)

  即金属氧化物半导体场效应晶体管是一种起到电气开关作用的场效应晶体管。它由3层组成:金属、氧化物和半导体,通过向称为栅极的电极施加电压来进行打开和关闭电流的动作。

  IGBT(Insulated Gate Bipolar Transistor)

  即绝缘栅双极晶体管,是具有将MOSFET和双极晶体管组合后的结构的晶体管。其特点是同时具有MOSFET的高速动作和双极晶体管的高耐电压、低导通电阻的特点。

  尽管结构不同,半个多世纪以来一直使用硅(Si)作为元件材料。这是因为Si具有良好的电气特性,同时具有易于加工成多种元件结构的特性。

  然而,目前Si基功率半导体已无法满足进一步降低多种电气和电子设备功耗所需的高水平技术要求。为了克服这一瓶颈况,比Si更适合作为功率半导体材料的碳化硅(SiC)和氮化镓(GaN)等新材料的使用范围正在不断扩大。

  SiC和GaN在击穿电场强度(影响耐电压)、迁移率(影响动作速度)和热导率(影响可靠性)等多个物理特性上具有适合功率半导体的特点。如果能够开发出发挥其出众特性的器件,就能制造出具有更高性能的功率半导体。

  今天,基于SiC的MOSFET和二极管已经实现了产品化,并已用于电动汽车电机驱动逆变器和太阳能发电功率调节器中的DC/AC转换器等。

  基于GaN的HEMT(High Electron Mobility Transistor)也已实现产品化。HEMT是一种高电子迁移率的场效应晶体管,能通过连接不同性质的半导体并诱导高迁移率电子来实现高速开关。目前,氮化镓HEMT已用于超小型PC的AC转换器和智能手机充电器等。

  然而,要充分发挥出SiC/GaN的潜力,离不开电容器和电感器等无源元件的同步发展。

  发挥SiC/GaN潜力,无源元件不可或缺

  仅通过单纯地替换现有电力电子电路中的Si基元件无法充分发挥基于新材料制造的功率半导体的潜力。这是因为组成电力电子电路的其他半导体IC、无源元件甚至控制软件都是在以使用Si基功率半导体为前提的情况下开发和选择的。为了有效利用基于新材料的功率半导体,这些周边元件也需要重新开发和重新选择。

  例如,在采用了为降低数据中心服务器的功耗而引进的GaN HEMT的AC/DC 转换器电路中,使用了多个GaN HEMT(上图)。

  利用GaN HEMT可以在高电压时进行高速开关的特性,可以提高功率电子电路的开关频率(动作频率)。在动作频率较高的电路中,电路中内置的电容器和电抗器信号处理电路中的电感器的电抗值可以很小。一般来说,低电抗元件的尺寸较小,因此可以让电路板更小并提高功率密度。同样,在驱动电动汽车的电机的逆变器电路等当中也可以通过引入SiC MOSFET实现周边元件小型化,进而实现逆变器电路整体的小型化和轻量化。

  另一方面,在高电压时进行高速开关的电源会产生高水平的噪声,这可能会对周边设备的动作产生不利影响。采用SiC或GaN功率半导体构建的电源在更高频率下进行开关,所以进一步增加了风险。因此,需要比使用以前的电力电子电路时更加严格的噪声对策。在这种情况下,需要使用设计用于高电压、大电流和高频电路的静噪元件,而不是用于以前的电路的静噪元件。

  除此之外,对于在无源元件当中也属于特别笨重的元件的变压器,也需要在更高频率下工作的小型变压器。现在已经开发出了以使用基于SiC和GaN的功率半导体为前提的薄型平面变压器等,并且已经投入市场。

  迄今为止,多种类型的半导体(不仅仅是功率半导体)都是使用以Si为基础制成的。因此,许多现有的电子元件都默认是以与Si基半导体组合使用为前提进行开发的。为了充分发挥采用新材料制成的功率半导体的效果,不仅需要在现有元件中寻找更好的元件,而且可能需要开发满足新技术要求的新元件。

  一般来说,在Si基功率半导体中,呈现可以应对更高电压和更大电流的元件的动作速度更低的趋势(上图)。因此,能够应对高电压和大电流的小型电容器和电抗器并不齐全。

  此外,在能够在高温下稳定工作的SiC基功率半导体当中,有将散热系统简化以减小尺寸和重量并降低成本的趋势。在这些情况下,无源元件在高温环境下也需要确保高可靠性。

  在功率半导体领域引入新材料是对半个多世纪以来针对Si材料进行优化的电气电子生态系统进行根本性变革的重大动向。针对新材料进行优化的周边电子元件的进步也非常值得关注。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
活动预告 | 村田面向多种定位场景的高性能GNSS定位融合解决方案
2026-01-13 13:12 阅读量:305
村田:工业设备电磁噪声对无线通信的影响及EMC对策
  近年来,运用IoT、AI、机器人和5G等前沿技术的智能工厂在制造业迅速普及。这些技术创新提高了自动化程度,节省了人力,并提高了生产效率。  然而,随着从传统的有线控制向无线控制的转变,确保工厂内部稳定的无线通信已成为一个重要的课题。特别是工业机器人和控制设备产生的电磁噪声对Wi-Fi、LTE和5G等无线信号造成干扰,可能会导致严重的运行问题,例如:  生产设备误动作  因通信错误而导致生产线停工  随着智能工厂的发展,电气和电子设备不仅需要正常运行,而且还需具备不对其他设备造成电磁干扰且不受外部干扰的能力。应对这些EMC(Electromagnetic Compatibility,电磁兼容性)风险对于维持稳定且有效的运行不可或缺。  01 智能工厂电磁噪声来源  智能工厂中潜在的对无线通信产生威胁的电磁噪声很多。在现在的生产现场,同时运行着多种多样的工业机器人、电机和控制设备,会产生从低频到GHz频带的多种电磁噪声。  测量结果也表明,这些噪声频带与Wi-Fi(2.4GHz/5GHz)、LTE和5G等无线通信频带重叠。  因此,在智能工厂中经常出现无线设备接收灵敏度不足和通信出错并威胁到其稳定有效地运行的情况。  表1 无线通信标准的频带  02 智能工厂潜在EMC风险  智能制造环境中,电磁噪声会带来两大风险:“外部干扰”和“设备自身的自干扰”。  首先是外部电磁噪声导致的误动作风险。  在工厂内的实验中,在无噪声环境中仅观察到了LTE信号。然而,在实际的工厂环境中,人们已经确认:信号和电磁噪声水平接近,接收灵敏度下降量可能会达到18dB。  其次,工业机器人和控制设备可能会产生“自干扰”。  自干扰(Self-Interference)是指设备自身发射的电磁波干扰其自身运行的现象,特别是在工业机器人和控制设备等复杂系统中,这可能会导致性能不足或意外行为。  设备自身产生的电磁噪声干扰其自身的运行,特别是DC-DC转换器(将直流电压转换为其他直流电压的装置),人们已经确认:DC-DC转换器会成为噪声源,电缆和金属外壳充当天线,导致接收灵敏度降低量可能会达到13dB。  03 工业机器人的噪声对策  要应对工业机器人电磁噪声,首先我们来分析EMI的产生机理。  工业机器人由三个要素组成:驱动部分(机械臂)、控制部分(包含电路板和DC-DC转换器在内的金属外壳)以及连接两者的电缆。  对电磁噪声源的调查表明,DC-DC转换器是主要的噪声源。而且,已确认电缆和金属外壳会起到像天线一样的作用,向周围辐射噪声。  因此,EMC对策应以下面两点为中心:  遏制来自DC-DC转换器的电磁噪声  预防噪声通过电缆和外壳传播  这些对策对于维持智能工厂中的无线通信质量和稳定运行不可或缺。  04 从案例中学习噪声对策  我们通过工厂现场的接收灵敏度改进,从实际事例中学习总结了对应噪声对策。  在实际生产现场,通过将静噪滤波器(扼流圈)插入DC-DC转换器的输出DC线路,无线通信性能得到了显著改进。具体而言,机器人工作时的LTE下限接收灵敏度改进了约11dB。噪声允许值参考了通用标准IEC61000-6-3(住宅和商业环境)  该对策之所以有效,是因为DC-DC转换器产生的高频噪声被滤波器的阻抗特性反射并返回到转换器侧,从而预防了其泄漏到输出侧。  选择滤波器时,重要的是考虑频率特性和插入损耗(由于插入滤波器而导致的信号衰减)等因素。  在本事例中,我们使用了村田制作所的LQW18CAR16(1.6×0.8×0.8mm,额定电流为1.3A)。另一种选择是村田制作所的BLM系列(铁氧体磁珠电感器),然而,其电流叠加特性与LQW系列不同,因此,请根据所需的噪声消除性能进行选择。  村田建议  静噪滤波器LQW18CAR16:  尺寸:1.6×0.8×0.8mm  额定电流:1.3A  LQW18CAR16  05 EMC标准的新近动向  适用于工业设备和机器人的EMC标准“CISPR11第7版”于2024年2月发布。与上一版(第6.2版)相比,新增了1至6GHz的发射限值。  今后,需要在更宽的频带范围内采取电磁噪声对策并符合相关标准,因此,在现场和设计部门双方及时掌握新近信息并采取实用的对策不可或缺。  在本文中,对实用的电磁噪声对策的思考方法和EMC标准的新近动向进行了相关解说。如有任意疑问或希望讨论具体事例,请随时联系我们。  06 总 结  随着智能工厂的发展,电磁噪声问题预计将在生产现场日益凸显。因此,更加强有力的EMC(电磁兼容性)对策不可或缺。为了有效应对这一问题,以下举措至关重要:  对工厂内的电磁噪声环境进行评估;  在工业设备和机器人中实施电子元件级别的噪声对策(特别是针对DC-DC转换器、电缆和外壳的对策)。  其中,电子元件级别的噪声对策应该是特别优先的事项之一。这是因为它直接影响无线通信的稳定性和设备的可靠性,在现场进行实际应对不可或缺。
2026-01-13 13:03 阅读量:289
村田首款,1210英寸、额定电压1.25kV、静电容达15nF的汽车用陶瓷电容器
  株式会社村田制作所初次*开发并开始量产了1210英寸(3.2×2.5mm)尺寸、额定电压1.25kV、具备C0G特性的、15nF静电容量的多层片式陶瓷电容器。该产品可用于车载充电器(OBC)及高性能民用电子设备的电源电路,有助于实现高效率的电力变换,并在高电压条件下稳定运行。(*由村田调查得出,截至2025年12月1日。)  主要特点  在1210英寸(3.2×2.5mm)尺寸、额定电压1.25kV且具备C0G特性的前提下,实现了15nF特大静电容量的多层片式陶瓷电容器。  1.25kV高耐压,适配SiC MOSFET。  C0G特性带来低损耗与稳定的电容值。  车载充电器(OBC)安装于电动汽车(EV)上,从外部电源为车载电池充电的装置。在电动汽车搭载的车载充电器以及民用设备的电源电路中,通常会包含用于高效电力变换的谐振电路,以及用于遏制电流、电压峰值的缓冲(吸收)电路。由于这两类电路中高电压与大电流反复作用,元件性能的轻微变化就可能导致效率下降、设备发热,进而可能引发工作异常或故障。因此,市场亟需具备在温度变化下性能稳定、损耗低且能承受高电压的电容器。  近年来,电源电路中的开关器件正从Si MOSFET向能够实现更高效率与高速开关的SiC MOSFET转移。开关半导体器件以高速对电流进行通断控制,实现电压与频率变换的,Si MOSFET采用硅半导体的电力控制用开关器件,多用于低至中耐压场景。SiC MOSFET是采用碳化硅的高耐压、高效率电力控制用开关器件,多用于超过1.2kV的场景,通常要求1.2kV的耐压规格,因此对额定电压高于该水平的电容器需求在增加。  为此,村田通过特有的陶瓷材料与内部电极薄层化技术,首次在1210英寸尺寸实现了额定电压1.25kV、具备C0G特性、静电容量为15nF的本产品,并已开始量产。借助C0G特性的低损耗及电容随温度变化的稳定性,本产品适用于谐振电路与缓冲(吸收)电路。
2026-01-07 10:25 阅读量:376
高绝缘、低漏电、高可靠!村田新一代DC-DC转换器,是如何做到的?
  在医疗、工业与能源领域,设备对电源性能与可靠性的要求日益提高。无论是工业和能源中的储能系统、可再生能源设施,还是直接接触人体的医疗设备,这些高性能应用都依赖具备高绝缘性与高可靠性的DC-DC转换器,以保障电子设备更高效、稳定地运行。  村田针对高性能市场,推出了新一代表面贴装型小型化DC-DC转换器“NXJ1T系列”。该产品具有4.2kV DC高绝缘耐压、低漏电流及高可靠性。  NXJ1T系列主要特性  高绝缘性能、低漏电流设计及高可靠性:有助于提高应用场景的可靠性和安全性。  效率提升:实现了约80%的效率,并且支持低开关频率(500kHz至2MHz)。  小型化设计:尺寸为13.70mm(L)*10.55mm(W)*4.04mm(H),有助于节省设备空间。  符合与安全和医疗相关的标准:本产品支持UL62368和2ANSI/AAMI ES60601-1。  高绝缘、低漏电、高可靠:如何做到?  村田的这款新一代DC-DC转换器,是怎么做到高绝缘、低漏电、高可靠的呢?  首先,NXJ1T系列具有高绝缘耐压优势,一个主要原因是其得益于村田专有的封装制造技术。  这款小型化表面贴装型的DC-DC转换器,采用了村田专有的创新绕组技术”Block Coil“,在紧凑的封装内实现高隔离耐压,即使开关或控制器发生故障,也能形成隔离屏障,从而实现了出众的热性能、机械性能和绝缘性能,加强了产品的安全性。村田专有的创新绕组技术”Block Coil“,在紧凑的封装内实现高隔离耐压  传统的DC-DC转换器采用隔离材料形成隔离屏障,树脂灌封层内部的微小局部放电可能导致微孔的形成,这些微孔随着时间的推移而聚结,导致隔离屏障的永久性击穿,从而使任意的高压放电都能够从输出端传导到输入端,反之亦然。  这款新型转换器模塑封装所采用的实心隔离材料,具有远超传统转换器好几倍的局部放电耐受能力。即使发生放电,依然能够维持隔离屏障的完整性,有效遏制微孔的产生。  其次,传统的DC-DC转换器通常采用双绞线绕制的变压器,线圈间距较近,容易导致较高的电容耦合。这意味着输出侧开关产生的任意噪声都可能被反射至输入电路。这可能导致控制电路出现误触发,从而需要使用更多的滤波元件,进而增加成本。  而这款新型转换器内的变压器则采用实心骨架上的独立绕组,可实现行业内居先的低绕组间容抗,形成高频隔音屏障,其共模瞬态抗扰度(CMTI)超过200kV/uS。  通过村田专有的封装技术,NXJ1T实现了更优的热性能表现,产品能够承受1,000次以上的-40°C至125°C的温度循环测试。更强的热循环表现能够使其具有更长的使用寿命。  此外,NXJ1T系列的封装能预防粉尘和细小颗粒侵入,保护内部器件及电路,确保更高的可靠性。因此,能够应对从工业和能源领域到医疗领域的大量应用。  需要进一步指出的是,这些性能优势都得以集成在这个行业标准封装中。NXJ1T采用符合行业标准的封装尺寸,且向后兼容现有的表面贴装方案,不需要变更设计即可实现更强的性能。
2025-12-22 11:34 阅读量:354
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
型号 品牌 抢购
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码