开关电源中电磁干扰如何解决?电源干扰原因分析

Release time:2022-04-24
author:Ameya360
source:网络
reading:3110

  开关电源工作在高压大电流高频开关状态下,其电磁兼容问题更为复杂。然而,它仍然符合电磁干扰的基本模型,抑制电磁干扰又该如何解决呢?本文Ameya360电子元器件采购网就从多个方面来分析原因。

开关电源中电磁干扰如何解决?电源干扰原因分析

  首先将工频交流整流为直流,再逆变为高频,最后再经整流滤波电路输出,得到稳定的直流电压。电路设计及布局不合理、机械振动、接地不良等都会形成内部电磁干扰。同时,变压器的漏感和输出二极管的反向恢复电流造成的尖峰,也是潜在的强干扰源。

  (1)内部干扰源

  ● 开关电路

  开关电路主要由开关管和高频变压器组成。开关管及其散热片与外壳和电源内部的引线间存在分布电容,它产生的du/dt具有较大幅度的脉冲,频带较宽且谐波丰富。开关管负载为高频变压器初级线圈,是感性负载。当原来导通的开关管关断时,高频变压器的漏感产生了反电势E=-Ldi/dt,其值与集电极的电流变化率成正比,与漏感成正比,迭加在关断电压上,形成关断电压尖峰,从而形成传导干扰。

  ● 整流电路的整流二极管

  输出整流二极管截止时有一个反向电流,其恢复到零点的时间与结电容等因素有关。它会在变压器漏感和其他分布参数的影响下产生很大的电流变化di/dt,产生较强的高频干扰,频率可达几十兆赫兹。

  ● 杂散参数

  由于工作在较高频率,开关电源中的低频元器件特性会发生变化,由此产生噪声。在高频时,杂散参数对耦合通道的特性影响很大,而分布电容成为电磁干扰的通道。

  (2)外部干扰源

  外部干扰源可以分为电源干扰和雷电干扰,而电源干扰以“共模”和“差模”方式存在。同时,由于交流电网直接连到整流桥和滤波电路上,在半个周期内,只有输入电压的峰值时间才有输入电流,导致电源的输入功率因数很低(大约为0.6)。而且,该电流含有大量电流谐波分量,会对电网产生谐波“污染”。

  开关电源中电磁干扰如何解决?电源干扰原因分析

  开关电源的EMC设计

  产生电磁干扰有3个必要条件:干扰源、传输介质、敏感设备,EMC设计的目的就是破坏这3个条件中的一个。针对于此,主要采取的方法有:电路措施、EMI滤波、屏蔽、印制电路板抗干扰设计等。

  1、降低开关损耗和开关噪声的软开关技术

  软开关是在硬开关基础上发展起来的一种基于谐振技术或利用控制技术实现的在零电压/电流状态下的先进开关技术。

  软开关的实现方法是:在原电路中增加小电感、电容等谐振元件,在开关过程前后引入谐振,消除电压、电流的重叠。

  2、减小干扰源干扰能量的缓冲电路

  在开关控制电源的输入部分加入缓冲电路,其由线性阻抗稳定网络组成,用于消除电力线干扰、电快速瞬变、电涌、电压高低变化和电力线谐波等潜在的干扰。缓冲电路器件参数为R1=500Ω,C=6nF,L=36mH,R=150Ω。

  3、切断干扰噪声传播路径的EMI滤波

  在开关电源输入和输出电路中加装EMI滤波器,是抑制传导发射的一个很有效方法。其参数主要有:放电电阻、插入损耗、Cx电容、Cy电容和电感值。其中,插入损耗是滤波器性能的一个关键参数。在考虑机械性能、环境、成本等前提下,应该尽量使插入损耗大一些。用共模、差模干扰的测量结果与标准限值,加上适当的裕量可得到滤波器的插入损耗IL。

  ILCM(dB)=Vcm(dB)-Vlimt(dB)-3(dB)+M(dB) (1)ILDM(dB)=VDM(dB)-Vlimt(dB)-3(dB)+M(dB) (2)式中,3dB表示在分离共模、差模传导干扰的测试过程中测试结果比实际值大3dB;M(dB)表示设计裕量,一般取6dB;Vlimit(dB)为相关标准如CISPR,FCC等规定的传导干扰限值。

  Cy=3300pF,L1、L2=0.7mH,它们构成共模滤波电路,抑制0.5~30MHz的共模干扰信号。Cx=0.1μF,L3、L4=200~500μH,采用金属粉压磁芯,与L1/L2、Cx构成L-N端口间低通滤波器,用于抑制电源线上存在的0.15~ 0.5MHz差模干扰信号。R用于消除可能在滤波器中出现的静电积累。

  4、用屏蔽来抑制辐射及感应干扰

  开关电源干扰频谱集中在30MHz以下的频段,直径r<λ/2π,主要是近场性质的电磁场,且属低阻抗场。可用导电良好的材料对电场屏蔽,而用导磁率高的材料对磁场屏蔽。此外,还要对变压器、电感器、功率器件等采取有效的屏蔽措施。屏蔽外壳上的通风孔最好为圆形,在满足通风的条件下,孔的数量可以多,每个孔的尺寸要尽可能小。接缝处要焊接,以保证电磁的连续性。屏蔽外壳的引入、引出线处要采取滤波措施。对于电场屏蔽,屏蔽外壳一定要接地。对于磁场屏蔽,屏蔽外壳不需接地。

  5、合理的PCB布局及布线

  敏感线路主要是指控制电路和直接与干扰测量设备相连的线路。要降低干扰水平,最简单的方法就是增大干扰源与敏感线路的间距。但由于受电源尺寸的限制,单纯的增大间距并非解决问题的最佳途径,更为合理的方法是根据干扰电场的分布情况将敏感线路放在干扰较弱的地方。

  其他解决开关电源的干扰问题方法如下:

  一般装设在可移动设备上的滤波器,其交流漏电流应<1mA;若为装设在固定位置且接地的设备上的电源滤波器,其交流漏电流应<3.5mA,医疗器材规定的漏电流更小。由于考虑到漏电流的安全规范,电容CY的大小受到了限制,一般为2.2~33nF。电容类型一般为瓷片电容,使用中应注意在高频工作时电容器CY与引线电感的谐振效应。

  差模干扰抑制器通常使用低通滤波元件构成,最简单的就是一只滤波电容接在两根电源线之间而形成的输入滤波电路,只要电容选择适当,就能对高频干扰起到抑制作用。该电容对高频干扰阻抗甚底,故两根电源线之间的高频干扰可以通过它,它对工频信号的阻抗很高,故对工频信号的传输毫无影响。该电容的选择主要考虑耐压值,只要满足功率线路的耐压等级,并能承受可预料的电压冲击即可。为了避免放电电流引起的冲击危害,CX电容容量不宜过大,一般在0.01~0.1μF之间。电容类型为陶瓷电容或聚酯薄膜电容。

  使用屏蔽降低电磁敏感设备的敏感性

  抑制辐射噪声的有效方法就是屏蔽。可以用导电性能良好的材料对电场进行屏蔽,用磁导率高的材料对磁场进行屏蔽。为了防止变压器的磁场泄露,使变压器初次级耦合良好,可以利用闭合磁环形成磁屏蔽,如罐型磁芯的漏磁通就明显比E型的小很多。开关电源的连接线,电源线都应该使用具有屏蔽层的导线,尽量防止外部干扰耦合到电路中。或者使用磁珠、磁环等EMC元件,滤除电源及信号线的高频干扰,但是,要注意信号频率不能受到EMC元件的干扰,也就是信号频率要在滤波器的通带之内。整个开关电源的外壳也需要有良好的屏蔽特性,接缝处要符合EMC规定的屏蔽要求。通过上述措施保证开关电源既不受外部电磁环境的干扰也不会对外部电子设备产生干扰。

("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
DC-DC电源模块常见故障及解决方案(二)
  在上一篇中,我们聚焦于输出参数异常引发的故障。本篇将承接上文,剖析另一大类问题——外部使用不当。这些故障通常源于电路设计、负载匹配或环境因素,同样会严重威胁系统稳定性与模块寿命。我们将针对启动困难、异常发热、快速失效及上电烧毁四类典型故障,提供深入分析和实用解决方案。  一、电源模块启动异常  模块无法正常启动或启动缓慢,常与外部电路配置直接相关。  主要原因与处理:  输出电容过大:过大的输出电容在上电瞬间会产生巨大的浪涌充电电流,可能触发模块过流保护而锁定。  解决方案:遵循规格书推荐值选用输出电容。如需更大电容,可在模块输出端串联小阻值电阻或磁珠以限制浪涌。  容性负载过重:负载端输入电容极大,等效于并联大电容,引发相同问题。  解决方案:在模块与负载间串联一个功率电感,构成LC滤波器。  输入电源驱动能力不足:模块启动时输入电流需求大,若前级电源内阻大或功率不足,其输出电压会被拉低至模块欠压锁定阈值以下,导致反复重启。  解决方案:选用功率充足、内阻低的前级电源,并在模块输入端增加储能电容以提供瞬时电流。  二、模块异常发热严重  异常高温会急剧缩短模块寿命,通常由效率低下或散热不良引起。  主要原因与处理:  电源选择不当:在大压差场景下误用线性稳压模块,其效率低下,功耗全部转化为热量。  解决方案:中高功率或大压差应用应优先选用高效率开关电源模块。  负载过重或过轻:负载持续超过额定功率也就是负载过流,这种情况会令模块超负荷运行;而负载极轻(<10%)时,模块可能工作在低效区,同样导致温升异常。  解决方案:确保负载在推荐范围内,功率需留有余量;对于长期轻载,可在输出端并联假负载电阻。  散热条件恶劣:模块安装在密闭空间或环境温度过高。  解决方案:改善通风,必要时加装散热片或通过导热垫将热量导至机壳。  三、电源模块快速失效  模块在远低于预期寿命的时间内损坏,常由持续的外部应力导致。  主要原因与处理:  长期电压应力:输入电压长时间接近或略微超过最大额定值,会缓慢损伤内部元件。  解决方案:确保实际最大输入电压(含纹波)始终在标称范围内。对不稳定输入,选用范围更宽的模块。  输出电容选用不当:使用过大或低质量的输出电容,反复的浪涌冲击会造成累积应力。  解决方案:严格按规格书推荐选用低ESR、高品质的电容。  长期轻载运行:某些模块在长期极轻载下可靠性可能下降。  解决方案:通过假负载确保最小负载,使模块工作在高效稳定区间。  四、电源上电瞬间烧毁  最严重的故障,多为灾难性的接线或电压错误所致。  主要原因与处理:  输入极性接反:正负极接反会导致模块内部器件瞬间击穿。  解决方案:加强接线检查,或在输入端串联肖特基二极管以增加防反接保护。  输入电压远超规格:误接入高压电源,直接造成过压击穿。  解决方案:严格进行上电前电压核查,复杂系统中可在前端增设过压保护模块(OVP)。  输出端严重短路:负载板存在焊接短路或电容极性装反。  解决方案:上电前务必测量输出端阻值,排除短路,并仔细检查极性元件方向。  构建鲁棒性电源系统的关键思维  综合本系列两篇内容,要系统性地避免故障,需建立以下设计思维:  精准选型,预留余量:关键参数(电压、电流、温度)需匹配,功率务必预留充足余量(建议>30%)以应对峰值。  规范布局,强化散热:严格遵守数据手册的布局、接地与散热指南,这是稳定工作的基础。  善用保护,优化外围:合理使用防反接、过压保护(TVS)、滤波电路等外围保护,提升系统抗风险能力。  全面测试,提前验证:在研发阶段对启动波形、效率、温升及保护功能进行充分测试,提前暴露问题。  通过深入理解并规避上述外部使用不当的风险,您将能充分发挥DC-DC电源模块的高可靠性优势,为整个电子系统奠定坚实的能源基础。
2026-01-05 14:58 reading:338
电源芯片或MOSFET严重发烫可能是什么原因?如何解决
  在电子设备中,电源芯片和MOSFET(金属氧化物半导体场效应晶体管)作为关键元件,起着调节电压、电流和功率管理的重要作用。然而,当电源芯片或MOSFET出现严重发烫时,可能会引起设备故障、降低性能甚至造成损坏。本文将探讨电源芯片或MOSFET严重发烫的可能原因,并提供解决方法。  1. 原因分析  1.1 高负载工作  原因:过大的电流负载可能导致电源芯片或MOSFET处于超负荷工作状态,加剧其内部损耗,进而引起发热问题。  解决方法:优化设计,确保合理匹配负载和芯片功率,减少负载电流,避免超负荷运行。  1.2 过电压或过电流  原因:过电压或过电流情况下,电源芯片或MOSFET容易受到损害,产生异常发热。  解决方法:添加保护电路,如过电压保护、过电流保护等,及时切断电路以保护元件免受损伤。  1.3 散热不良  原因:不良的散热设计或散热器失效可能导致电源芯片或MOSFET无法有效散热,从而产生过热现象。  解决方法:改进散热设计,增加散热面积、使用更高效的散热器或风扇,确保元件能够有效散热。  1.4 环境温度过高  原因:工作环境温度过高会影响元件的散热效果,使电源芯片或MOSFET更容易发热。  解决方法:优化设备安装位置、通风条件,降低工作环境温度,提高散热效率。  1.5 质量问题或老化  原因:电源芯片或MOSFET本身质量问题或长期使用导致老化也可能引起发热异常。  解决方法:定期检查维护电路元件,避免使用劣质元件,及时更换老化严重的电源芯片或MOSFET。  2. 解决方案  2.1 合理设计  根据实际需求选择符合要求的电源芯片或MOSFET。  合理布局电路板,减少热量堆积区域,优化电路连接方式。  2.2 添加保护电路  安装过电压保护、过电流保护等保护电路,预防突发情况给电源芯片或MOSFET带来损害。  2.3 改善散热  使用高导热材料,如铜制散热片或热管,提高散热效率。  添加风扇或风道,增加空气流通量,帮助散热。  2.4 优化工作环境  控制工作环境温度,避免高温环境下长时间运行。  确保设备安装位置通风良好,不受阻碍。  2.5 定期检查和维护  定期检查电源芯片或MOSFET是否正常工作,有无明显损伤或老化迹象。  及时更换质量问题或老化严重的元件,确保设备正常运行。  电源芯片或MOSFET严重发烫可能会对设备稳定性和寿命造成影响,通过合理设计、添加保护电路、改善散热、优化工作环境以及定期检查维护,可以有效预防和解决电源芯片或MOSFET发热问题,确保设备运行稳定可靠。
2025-12-18 15:31 reading:379
DCDC电源模块常见故障及解决办法
  DCDC电源模块的故障通常可归结为输出参数异常和外部使用不当两大类,这些故障直接影响系统稳定与安全。本篇着重介绍输出参数异常,针对最常见的四类输出异常问题,输出电压过高、输出电压过低、输出纹波噪声过大和模块绝缘耐压不良深入分析其根本原因,并提供可操作的详细解决方案。  一、输出电压过高  输出电压过高是危险故障,可能瞬间烧毁后级电路。  主要原因与处理:  1.负载过轻导致环路失调:多数开关电源需最小负载(通常≥10%额定负载)以维持反馈稳定。空载时,环路可能失控,致使输出飙升。  解决方案:确保模块带有最小负载。若电路存在空载可能(如待机状态),必须在输出端永久并联一个假负载电阻(例如,对于5V/10W模块,可并联一个250Ω/0.5W的电阻)。  2.输入电压超出规格:前端供电电压超过模块最大额定输入,导致占空比或内部控制异常。  解决方案:核实输入直流电压是否在模块规定范围内。对于不稳定的总线电压,应选择输入范围更宽的型号,并在输入端增设过压保护电路(如TVS管)。  3.反馈回路异常:外部反馈分压电阻值漂移或开路,或布线引入噪声干扰了反馈信号。  解决方案:检查并确认反馈网络电阻阻值准确、连接可靠。优化PCB布局,使反馈走线远离噪声源(如电感和开关节点),并尽量短而粗。  二、输出电压过低  输出电压不足会导致系统复位、芯片工作异常,长期运行损害设备寿命。  主要原因与处理:  1.模块超负荷运行:负载电流持续或瞬时超过模块带载能力,引发输出电压跌落。  解决方案:准确评估系统峰值功耗(而非平均值),并预留充足余量(建议≥30%)。更换功率更大的模块,并确保其在允许的工作温度内使用。  2.线路压降损耗显著:长距离、细导线的供电线路电阻会产生不可忽视的压降。  解决方案:优化系统布局,尽可能缩短模块与负载的距离,并根据电流值加粗导线截面积或使用更厚的PCB覆铜。  3.输入电压偏低或纹波过大:输入直流电压在最低工作电压边缘,或输入存在大纹波,导致模块无法正常调节。  解决方案:确保输入电压高于模块规定的最低值。在模块输入端增加足够的输入储能电容,以降低输入阻抗并吸收纹波电流。  三、输出纹波噪声过大  过大的噪声是干扰模拟信号精度和造成数字电路误动作的常见原因。  主要原因与处理:  1.PCB布局与接地设计不当:功率环路(输入电容-模块-输出电容)面积过大,或高频开关噪声通过地平面耦合到敏感电路。  解决方案:严格遵循模块手册的布局建议,将输入/输出电容紧靠模块引脚放置,以最小化功率环路面积。采用单点接地或分层接地,将功率地(PGND)与信号地(AGND/SGND)在单点连接,避免噪声串扰。  2.滤波不足与参数选择不当:输出滤波电容的ESR(等效串联电阻)过大或容值不足,无法有效滤除开关频率及其谐波噪声。  解决方案:在输出端使用低ESR的陶瓷电容或聚合物电容进行高频滤波。可额外增加一个小型LC二阶滤波器(如铁氧体磁珠+电容)来进一步衰减高频噪声。  测量技巧:使用示波器测量纹波时,应开启20MHz带宽限制,并使用探头接地弹簧而非长引线,以获取真实数据。  四、模块绝缘耐压不良  此问题直接关乎人身与设备安全,尤其是在有隔离要求的系统中。  主要原因与处理:  1.测试方法不规范:耐压测试仪开机冲击或电压爬升率设置不当,造成瞬间过压击穿。  解决方案:进行耐压测试时,必须采用“缓升缓降”模式,将电压从零逐步平稳升至规定值,并保持规定时间。  2.模块绝缘等级选型不足:未考虑系统所需的隔离电压(如总线电压、安全等级),选用了隔离强度不够的模块。  解决方案:根据系统架构和安全标准,明确所需隔离等级与耐压值(如1500VDC基本隔离)并选择留有足够余量的型号。  3.生产或维修过程中的损伤:装配应力或返修时的高温,可能损坏模块内部结构或绝缘材料。  解决方案:在安装设计中避免对模块施加机械应力。严格控制焊接温度和时间,或使用连接器进行插接。  系统性预防建议:  精准化选型:综合考虑输入/输出电压范围、电流、温度、隔离及效率要求,功率务必预留充足余量。  规范化布局与安装:严格遵守数据手册中的布局、接地和散热指南,这是发挥DCDC模块性能的关键。  专业化验证:在研发阶段,使用正确方法对效率、纹波、噪声及隔离耐压进行测试验证,及早发现问题。
2025-12-15 11:51 reading:433
如何消除电源纹波 电源纹波抑制方法
  电源纹波是指电源输出中的交流成分或波动现象。它是评估电源稳定性和质量的重要指标之一,可以对电子设备的工作效果和可靠性产生影响。下面将介绍如何消除电源纹波以及一些常用的电源纹波抑制方法。  1. 如何消除电源纹波  电源纹波可能会对设备的稳定性和性能产生不利影响,因此,消除电源纹波是非常重要的。以下是一些常见的方法来消除电源纹波。  1.1 使用滤波器  滤波器是一种常用的电路元件,可以通过去除高频成分来减少电源纹波。常见的滤波器包括电容滤波器和电感滤波器。电容滤波器通过将纹波电压或电流引入电容器来平滑电源输出。而电感滤波器则通过引入电感元件来阻碍高频信号的传输,从而减小电源纹波。  1.2 提升电源设计质量  电源的设计质量直接关系到纹波水平的控制。通过优化电源设计,可以有效地降低纹波水平。例如,合理选择电源元件、降低电源的输入噪声和输出阻抗等,都可以减小电源纹波。  1.3 使用稳压器  稳压器是一种常见的电路元件,能够在变化的电源输入条件下保持稳定的输出电压或电流。使用稳压器可以有效地消除电源纹波,并提供更稳定的电源输出。常见的稳压器包括线性稳压器和开关稳压器。  2. 电源纹波抑制方法  除了消除电源纹波的方法外,还有一些其他的抑制方法可用于减小电源纹波的影响。  2.1 地线隔离  地线隔离是一种常用的方法,通过将设备的信号地与电源地隔离开来减少电源纹波的传播。这样可以避免纹波从电源地进入设备的信号地,从而减小纹波对设备的干扰。  2.2 降低负载变化  负载变化会引起电源输出的波动,因此减小负载的变化范围也是一种抑制电源纹波的方法。例如,在设计电路时,可以采取合适的负载匹配和稳定电源电压的措施来减小负载变化。  2.3 良好的布线和接地  在电路设计和安装过程中,良好的布线和接地是抑制电源纹波的重要因素。减少电源线和信号线之间的干扰,避免回路环流和地回流等问题,可以有效地降低电源纹波水平。  总之,消除电源纹波和抑制电源纹波是确保电子设备工作稳定性和可靠性的重要措施。通过使用滤波器、提升电源设计质量、使用稳压器等方法来消除电源纹波,并采用地线隔离、降低负载变化和进行良好的布线和接地来抑制电源纹波,可以有效地改善电源输出的稳定性和质量。在实际应用中,应根据具体情况选择合适的方法或组合多种方法来解决电源纹波问题。  同时,还需要注意以下几点:  了解设备的电源纹波要求:不同的设备对电源纹波有不同的要求,在消除和抑制电源纹波时,要根据设备的要求和标准来确定目标值。  进行严格的测试和测量:在处理电源纹波问题时,进行准确的测试和测量非常重要。使用合适的测试设备和方法,如示波器、频谱分析仪等,以确保得到可靠的数据和结果。  综合考虑其他因素:除了电源纹波之外,还应综合考虑其他可能影响设备稳定性和性能的因素,如电磁干扰、温度变化等,以全面提升设备的工作质量。  通过采取适当的措施来消除和抑制电源纹波,可以有效地提高电子设备的可靠性和稳定性,减少故障和干扰的发生,从而保证设备的正常运行和良好的性能表现。
2025-11-25 16:51 reading:396
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
model brand To snap up
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code