简述电路设计中七种常用接口类型

Release time:2022-01-14
author:
source:网络
reading:2535

电路设计中,我们要尽量把无用功率设计的越小越好,从而提高功率因素。在电路系统的各个子模块进行数据交换时可能会存在一些问题导致信号无法正常和高质量地“流通”,例如有时电路子模块各自的工作时序有偏差(如CPU与外设)或者各自的信号类型不一致(如传感器检测光信号)等,这时我们应该考虑通过相应的接口方式来很好地处理这个问题。

简述电路设计中七种常用接口类型

(1)TTL电平接口从学习模拟电路、数字电路开始,对于一般的电路设计,TTL电平接口基本就脱不了“干系”!它的速度一般限制在30MHz以内,这是由于BJT的输入端存在几个pF的输入电容的缘故(构成一个LPF),输入信号超过一定频率的话,信号就将“丢失”。它的驱动能力一般最大为几十个毫安。正常工作的信号电压一般较高,要是把它和信号电压较低的ECL电路接近时会产生比较明显的串扰问题。

(2)CMOS电平接口许多人都知道,正常情况下CMOS的功耗和抗干扰能力远优于TTL。但鲜为人知的是,在高转换频率时,CMOS系列实际上却比TTL消耗更多的功率。

由于CMOS的工作电压目前已经可以很小了,有的FPGA内核工作电压甚至接近1.5V,这样就使得电平之间的噪声容限比TTL小了很多,因此更加加重了由于电压波动而引发的信号判断错误。众所周知,CMOS电路的输入阻抗是很高的,因此,它的耦合电容容量可以很小,而不需要使用大的电解电容器。

由于CMOS电路通常驱动能力较弱,所以必须先进行TTL转换后再驱动ECL电路。此外,设计CMOS接口电路时,要注意避免容性负载过重,否则的话会使得上升时间变慢,而且驱动器件的功耗也将增加(因为容性负载并不耗费功率)。

(3)ECL电平接口它的速度“跑”得够快,甚至可以跑到几百MHz!这是由于ECL内部的BJT在导通时并没有处于饱和状态,这样就可以减少BJT的导通和截止时间,工作速度自然也就可以提上去了。

但是,这是要付出代价的。它的致命伤:功耗较大!它引发的EMI问题也就值得考虑了,抗干扰能力也就好不到哪里去了。还有要注意的是,一般ECL集成电路是需要负电源供电的,也就是说它的输出电压为负值,这时就需要专门的电平移动电路了。

(4)RS-232电平接口它是低速串行通信接口标准,要注意的是,它的电平标准有点“反常”:高电平为-12V,而低电平为+12V。所以,当我们试图通过计算机与外设进行通信时,一个电平转换芯片MAX232自然是少不了的了。但是我们得清醒地意识到它的一些缺点,例如数据传输速度还是比较慢、传输距离也较短等。

(5)差分平衡电平接口它是用一对接线端A和B的相对输出电压(uA-uB)来表示信号的,一般情况下,这个差分信号会在信号传输时经过一个复杂的噪声环境,导致两根线上都产生基本上相同数量的噪声,而在接收端将会把噪声的能量给抵消掉,因此它能够实现较远距离、较高速率的传输。工业上常用的RS-485接口采用的就是差分传输方式,它具有很好的抗共模干扰能力。

(6)光隔离接口光电耦合是以光信号为媒介来实现电信号的耦合和传递的,它的“好处”就是能够实现电气隔离,因此它有出色的抗干扰能力。在电路工作频率很高的条件下,基本只有高速的光电隔离接口电路才能满足数据传输的需要。

有时为了实现高电压和大电流的控制,我们必须设计和使用光隔离接口电路来连接如上所述的这些低电平、小电流的TTL或CMOS电路,因为光隔离接口的输入回路和输出回路之间可以承受几千伏特的高压,足以满足一般的应用了。

此外,光隔离接口的输入部分和输出部分必须分别采用独立的电源,否则的话还是有电气联系,也就不叫隔离了。

(7)线圈耦合接口它的电气隔离特性好,但是允许的信号带宽有限。例如变压器耦合,它的功率传输效率是非常高的,输出功率基本接近其输入功率,因此,对于一个升压变压器来说,它可以有较高的输出电压,但是却只能给出较低的电流。

此外,变压器的高频和低频特性并不让人乐观,但是它的最大特点就是可以实现阻抗变换,当匹配得当时,负载可以获得足够大的功率,因此,变压器耦合接口在功率放大电路设计中很“吃香”。

以上文章就介绍到这了,我们在设计的时候,需要有全局观,然后再设计各个细节,在设计的时候,还需要理论作为一个指导。

("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
射频、低频、中频电路如何不互相干扰?
2025-11-17 15:54 reading:310
如何通过硬件电路优化降低ESD干扰
  在电子电路系统设计中,工程师处理ESD有时候总觉得没有头绪,主要原因是ESD测试难以量化,每次测试的结果也会存在差异,所以凭感觉处理起来很‘玄学’。 简单说起来就是ESD对系统内部存在干扰,但处理起来常常就是一团乱麻,监测不到ESD泄放路径。单从电路增加ESD防护设计维度有时候是无法达到目的,所以PCB设计是解决ESD防护问题中非常重要的一环,但必要时还是要配合ESD器件共同达到抑制的目的。  无论是普通电路系统还是高速电路系统,对于EMC的处理都很有必要,今天就分享几个PCB Layout几个原则,可以大大减小EMC出现问题的概率。PCB布局的ESD防护思路是:敏感的信号或者电路远离静电放电测试点,信号环路面积最小化噪声耦合,降低参考地平面电位差保持信号参考电平稳定。图1.PCB Layout示意图  如图1所示,PCB Layout设计建议参考  1. 单层PCB设计时,设置良好的接地平面和电源平面,信号线尽可能紧靠电源平面层或接地平面,保证信号回流时的通路以最短,信号环路最小的原则。  2. 多层PCB层叠设计必须保证比较完整的GND平面,所有的 ESD泄放路径直接通过过孔连接到这个完整的GND平面,其他层尽可能多的铺 GND。  3. 在PCB四周增加地保护环路,关键信号(RESET/Clock等)与板边距离不小于 5mm,同时必须与布线层的板边GND铜皮距离不小于 10mils。  4. 在电源和接地之间设计高频旁路电容,要求等效串联电感值(ESL)和等效串联电阻(ESR)越小越好  5. 对于部分ESD 整改难度较大的IO,可将IO GND独立出来,与电源GND用磁珠连接,以防止ESD能量进入GND。  另外,在PCB布局时做好敏感器件的保护、隔离,一些敏感模块如射频、音频、存储器可以添加屏蔽罩。但屏蔽罩的整体成本太高,ESD保护器件具有更好的性价比,但如何选用合适的ESD器件才是关键,配合PCB的线路设计达到防护目的。图2.ESD泄放路径避免能量进入保护电路  放电事件通常通过接口(如连接线)或人工端口(如USB、音频)迫使电流 IESD (图2)迅速进入系统。使用ESD二极管保护系统免受ESD影响,取决于ESD二极管能否将 IESD 分流到地,在选用ESD器件时需要注意如下参数:  1.工作电压 (VRWM)  VRWM工作电压是指建议器件工作电压范围,应用电路最高电压超过该值时会导致漏电流增大,从而损坏器件和影响系统运行。建议电路应用电压≤ ESD 器件的工作电压VRWM。  2.结电容(Cj)  ESD器件与信号并联使用,而ESD半导体设计时的寄生电容,对于高速信号应最大限度地减小结电容Cj以保持信号完整性。  3. IEC 61000-4-2等级(Contact discharge/ Air discharge)  IEC61000-4-2等级体现器件在接触放电和空气放电的稳健性。接触放电是指用静电枪向ESD器件放电时该器件可承受的最大电压。空气放电是指使用静电枪空气间隙向ESD器件放电时该器件可承受的最大电压。  4.ESD器件通道数  ESD器件有单通道和多通道不同封装类型。多通道是内部集成多个单通道器件,根据应用需求,多通道器件可实现更小尺寸方案并节省PCB空间,当然,单通道器件可提供更高的设计灵活性。  5.单向与双向  双向ESD器件可同时具有正负工作电压的电路中(±3.3V等),因此,双向ESD器件可支持数据信号在正负电压之间切换的接口(如模拟信号/RS233等)。单向ESD只有工作在正电压范围,但具有更好的负钳位。  6. 钳制电压(Vc)  钳制电压表示瞬态脉冲下作用于ESD器件时2端的压降,钳制电压越低意味能更好的保护后级的电子元件。瞬态测试包含静电和浪涌,不同测试条件下钳制电压不同,选型前确认具体测试需求和后级极限损坏电压,保证器件选型的合理性  综上,要想从PCB布局+ESD二极管实现最好的静电防护,很大程度上需要从整机系统上优化设计。因为设计人员无法控制 IESD,所以降低对地阻抗是将钳制电压最小化的主要方法。设计建议如下(图3)。图3.ESD二极管PCB优化建议
2025-08-25 13:09 reading:452
电路中的“高频”和“高速”有什么区别?
  “高速电路”已经成为当今电子工程师们经常提及的一个名词,但究竟什么是高速电路?  这的确是一个“熟悉”而又“模糊”的概念。而事实上,业界对高速电路并没有一个统一的定义,通常对高速电路的界定有以下多种看法:有人认为,如果数字逻辑电路的频率达到或者超过45MHZ~50MHZ,而且工作在这个频率之上的电路已经占到了整个电子系统一定的份量(比如说1/3),就称为高速电路;也有人认为高速电路和频率并没有什么大的联系,是否高速电路只取决于它们的上升时间;还有人认为高速电路就是我们早些年没有接触过,或者说能产生并且考虑到趋肤效应的电路;更多的人则对高速进行了量化的定义,即当电路中的数字信号在传输线上的延迟大于1/2上升时间时,就叫做高速电路,本文也沿用这个定义作为考虑高速问题的标准  此外,还有一个容易产生混淆的是“高频电路”的概念,“高频”和“高速”有什么区别呢?对于高频,很多人的理解就是较高的信号频率,虽然不能说这种看法有误,但对于高速电子设计工程师来说,理解应当更为深刻,我们除了关心信号的固有频率,还应当考虑信号发射时同时伴随产生的高阶谐波的影响,一般我们使用下面这个公式来做定义信号的发射带宽,有时也称为EMI发射带宽。  F=1/(Tr*π)  F是频率(GHz),Tr(纳秒)指信号的上升时间或下降时间。  通常当F>100MHz的时候,就可以称为高频电路。所以,在数字电路中,是否是高频电路,并不在于信号频率的高低,而主要是取决于上升沿和下降沿。根据这个公式可以推算,当上升时间小于3.185ns左右的时候,我们认为是高频电路。  对于大多数电子电路硬件设计工程师来说,完全没有必要拘泥于概念的差异,心中应该有个广义的“高速”定义,那就是:如果在确保正确的电气连接的前提下,电路仍不能稳定的高性能工作,而需要进行特殊的布局、布线、匹配、屏蔽等处理,那么,这就是“高速”设计。
2025-05-29 11:38 reading:580
一文了解分立电路和集成电路的区别
  在电子技术领域,分立电路和集成电路是两种常见的电路形式,它们各自有着独特的特点和应用场景。  一、基本概念  分立电路 :是指由分立的电子元件,如电阻、电容、电感、晶体管等,通过导线连接而成的电路。这些元件各自独立封装,具有明显的物理界限,需要手动或通过简单的自动化设备进行焊接和连接,以实现特定的电路功能。  集成电路 :是将大量的电子元件(如晶体管、二极管、电阻、电容等)以及它们之间的连接导线,通过半导体工艺集成在一个小小的芯片上,构成一个完整的电路系统。有如一个微缩的电子世界,把复杂的功能都浓缩在一块小小的硅片上。  二、尺寸与体积  分立电路 :由于元件是独立的,并且需要一定的连接空间,所以分立电路的尺寸和体积相对较大。例如,一个简单的分立放大电路,可能需要数个甚至数十个分立元件,分布在一块较大的电路板上,占据较大的空间。  集成电路 :其优势在于高度的集成化,能够在很小的芯片面积上集成成千上万甚至更多的电子元件。一个典型的集成电路芯片可能只有几平方毫米到几十平方毫米大小,但可以实现非常复杂的功能,大大减小了电路的尺寸和体积。  三、性能指标  分立电路 :  在一些高频应用中,由于元件之间的分布参数(如引线电感、寄生电容等)较大,可能会对电路的高频性能产生较大的影响,导致带宽受限、信号衰减等问题。  其参数的一致性和稳定性相对较差,因为每个分立元件在制造过程中可能会存在一定的差异,而且受环境因素(如温度、湿度等)的影响较大,这会影响整个电路的性能。  集成电路 :  经过精心的电路设计和半导体工艺优化,能够在较宽的频率范围内保持较好的性能,具有较高的增益、较低的噪声和较好的线性度等性能优势。  由于元件是在同一块芯片上制造出来的,其参数的一致性和稳定性较好,受外界环境因素的影响相对较小,能够提供更可靠的性能。  四、成本与生产效率  分立电路 :  元件成本相对较低,但如果需要大量使用元件来构建复杂的电路,成本也会相应增加。同时,由于需要人工或简单设备进行焊接和组装,生产效率较低,对于大规模生产来说,时间和人力成本较高。  设计和调试过程相对繁琐,需要逐一考虑每个元件的选型、布局和连接方式,而且在调试过程中,对元件的更换和调整较为麻烦。  集成电路 :  初始的研发和设计成本较高,因为需要进行复杂的电路设计和半导体制造工艺开发。然而,一旦设计完成并投入大规模生产,由于其高度的集成化和自动化生产流程,单位成本可以大幅降低。  生产过程高度自动化,能够快速地生产大量的集成电路芯片,大大提高了生产效率。而且在设计和调试阶段,可以借助专业的电子设计自动化(EDA)工具进行模拟和优化,提高了设计效率和电路的可靠性。  五、应用场景  分立电路 :常用于一些对电路规模要求较小、对性能要求不是特别苛刻,或者需要根据特定需求进行定制的场合。例如,在一些简单的电子小制作、维修领域,或者对某些特殊功能进行单独实现时,分立电路具有一定的优势。比如制作一个简单的音频放大器,或者对某个损坏的电子设备中的某个特定电路部分进行修复。  集成电路 :广泛应用于各种复杂的电子设备和系统中,如计算机、智能手机、通信设备、消费电子等。它们能够实现复杂的信号处理、数据存储、逻辑运算等功能,是现代电子技术发展的基石。以智能手机为例,其中的处理器芯片、存储芯片、通信芯片等都是高度集成的集成电路,使得手机能够具备强大的功能和小巧的体积。  总之,分立电路和集成电路在电子技术中各具特点,它们在不同的应用场景下发挥着各自的优势,共同推动着电子技术的发展和应用。
2025-04-30 17:40 reading:805
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
model brand To snap up
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code