ROHM’s New SiC Schottky Barrier Diodes for High Voltage xEV Systems: Featuring a Unique Package Design for Improved Insulation Resistance
  ROHM has developed surface mount SiC Schottky barrier diodes (SBDs) that improve insulation resistance by increasing the creepage distance between terminals. The initial lineup includes eight models - SCS2xxxNHR - for automotive applications such as onboard chargers (OBCs), with plans to deploy eight models - SCS2xxxN - for industrial equipment such as FA devices and PV inverters in December 2024.  The rapidly expanding xEV market is driving the demand for power semiconductors, among them SiC SBDs, that provide low heat generation along with high-speed switching and high-voltage capabilities in applications such as onboard chargers. Additionally, manufacturers increasingly rely on compact surface mount devices (SMDs) compatible with automated assembly equipment to boost manufacturing efficiency. Compact SMDs tend to typically feature smaller creepage distances, fact that makes high-voltage tracking prevention a critical design challenge.  As leading SiC supplier, ROHM has been working to develop high-performance SiC SBDs that offer breakdown voltages suitable for high-voltage applications with ease of mounting. Adopting an optimized package shape, it achieves a minimum creepage distance of 5.1mm, improving insulation performance when contrasted with standard products.  The new products utilize an original design that removes the center pin previously located at the bottom of the package, extending the creepage distance to a minimum of 5.1mm, approx. 1.3 times greater than standard products. This minimizes the possibility of tracking (creepage discharge) between terminals, eliminating the need for insulation treatment through resin potting when surface mounting the device on circuit boards in high voltage applications. Additionally, the devices can be mounted on the same land pattern as standard and conventional TO-263 package products, allowing an easy replacement on existing circuit boards.  Two voltage ratings are offered, 650V and 1200V, supporting 400V systems commonly used in xEVs as well as higher voltage systems expected to gain wider adoption in the future. The automotive-grade SCS2xxxNHR are AEC-Q101 qualified, ensuring they meet the high reliability standards this application sector demands.  Going forward, ROHM will continue to develop high-voltage SBDs using SiC, contributing to low energy consumption and high efficiency requirements in automotive and industrial equipment by providing optimal power devices that meet market needs.  Application Examples◇ Automotive applications: Onboard chargers (OBCs), DC-DC converters, etc.  ◇ Industrial Equipment: AC servo motors for industrial robots, PV inverters, power conditioners, uninterruptible power supplies (UPS), and more  Online Sales InformationAvailability: The SCS2xxxxNHR for automotive applications are available now.  The SCS2xxxN for industrial equipment are scheduled in December 2024.  Pricing: $10.50/unit (samples, excluding tax)  Online Distributors: DigiKey™, Mouser™ and Farnell™  The products will be offered at other online distributors as they become available.  EcoSiC™ BrandEcoSiC™ is a brand of devices that leverage silicon carbide, which is attracting attention in the power device field for performance that surpasses silicon. ROHM independently develops technologies essential for the advancement of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  TerminologyCreepage Distance  The shortest distance between two conductive elements (terminals) along the surface of the device package. In semiconductor design, insulation measures with such creepage and clearance distances must be taken to prevent electric shocks, leakage currents, and short-circuits in semiconductor products.  Tracking (Creepage Discharge)  A phenomenon where discharge occurs along the surface of the package (insulator) when high voltage is applied to the conductive terminals. This can create an unintended conductive path between patterns, potentially leading to dielectric breakdown of the device. Package miniaturization increases the risk of tracking by reducing creepage distance.  Resin Potting  The process of encapsulating the device body and the electrode connections between the device and circuit with resin, such as epoxy, to provide electrical insulation. This provides durability and weather resistance by protecting against water, dust, and other environmental conditions.  AEC-Q101 Automotive Reliability Standard  AEC stands for Automotive Electronics Council, a reliability standard for automotive electronic components established by major automotive manufacturers and US electronic component makers. Q101 is a standard that specifically applies to discrete semiconductor products (i.e. transistors, diodes).
Key word:
Release time:2024-11-20 14:00 reading:747 Continue reading>>
NSM211x Series High-Precision AEC-Q100 Current Sensors Eliminate Need for External Isolation Components
  NOVOSENSE Microelectronics, a semiconductor company specializing in high-performance analog and mixed-signal chips, has announced the NSM211x, a series of automotive-grade fully integrated high-bandwidth, high-isolation current sensors that both ensure precise current measurement and eliminate the need for any external isolation components.  On display at Electronica 2024 (Stand B5.450), the automotive-grade series targets applications including OBC/DC-DC converters, PTCs, automotive motor control, charging station current detection and fuel cell systems.  Certified to meet AEC-Q100 Grade 0 reliability standards, the series is designed to operate stably within a wide temperature range (-40 to 150°C) and addresses the needs of AC or DC current detection in automotive applications with a high isolation voltage, strong current handling capability and high reliability.  With a -3 dB bandwidth of up to 1 MHz and a response time of 400 ns, the NSM211x series helps control systems achieve rapid loop control and overcurrent protection. The series also features a creepage distance of up to 8.2mm and isolation voltage withstand of 5,000 Vrms per UL standards, with a maximum working isolation voltage of 1,618 Vpk.  It is available in three packaging options, SOP8, SOW16 and SOW10. These respectively have a primary side impedance of 1.2 mΩ, 0.85 mΩ/1 mΩ and an industry leading 0.27mΩ, with a continuous current handling capability of up to 100 A. Multiple product models are available for each package.  The current sensors integrate internal temperature compensation algorithms and offline calibration to enable a high measurement accuracy (<±2% sensitivity error and <±10 mV offset error) across the full temperature range, with no need for secondary programming.  The NSM211x series supports 3.3 V and 5 V power supply voltage as well as DC or AC current measurement with a current range of 5~200 A with options for reference voltage output, overcurrent protection output, and configurable overcurrent protection thresholds.
Key word:
Release time:2024-11-15 14:30 reading:801 Continue reading>>
BIWIN's
  The Third GMIF2024 Innovation Summit was successfully held on September 27, 2024 at Renaissance Shenzhen Bay Hotel. The event brought together senior executives and industry experts from renowned domestic and international companies, including the School of Integrated Circuits at Peking University, Micron, Western Digital, Solidigm, Arm, UNISOC, Intel, iFlytek, Rockchip, Silicon Motion, BIWIN, Victory Giant, Allwinner, InnoGrit, Maxio, QUANXING, Montage, Applied Materials (AMAT), Lam Research, DISCO, Skyverse, Loongson Technology, and many others. The gathering saw industry leaders engage in discussions on global storage innovation and ecosystem collaboration for shared growth in the AI era. During the summit, the GMIF2024 Annual Awards were officially unveiled, and a total of 38 key enterprises from across the industry supply chain had been honored for their outstanding contributions.  At the GMIF2024 Innovation Summit, Sam Sun, Chairman of BIWIN Storage, delivered a keynote speech titled "Integrated R&D and Packaging 2.0 Strategy: Full Industry Chain Layout Empowering Client Value Elevation". In the keynote, Mr. Sun shared BIWIN's latest strategic initiatives, technological breakthroughs, and future development over the past year. Supported by continued investment and efforts in integrated R&D and packaging, BIWIN Storage is leveraging advanced technology and full-chain collaboration to empower customers to achieve greater value and drive industry progress.  From Brand Upgrade to Global Market Expansion: Innovation-Driven and Sustained Growth  Mr. Sun first and foremost highlighted BIWIN’s significant initiative in brand upgrade in 2024. A new logo and brand slogan were unveiled: 'Infinite Storage, Unlimited Solutions'. More than a transformation of its brand image, this upgradation is an emblem to BIWIN's ongoing strategic, technological and market expansion and the demonstration of its vision to achieve continuous growth in the global storage field.  In the global market, BIWIN Storage achieved remarkable results in the first half of 2024, thanks to precise market positioning and efficient localized delivery. Its revenue surpassed 3.4 billion RMB, marking an almost 200% increase year-on-year. This growth reflects the successful implementation of the company's global expansion and localized operation strategies.  Integrated R&D and Packaging 2.0 Strategy: Building Core Competence to Drive Technological Advancement  BIWIN's "Integrated R&D and Packaging 2.0 Strategy" is regarded as a crucial initiative in its technological innovation and full-chain layout. Mr. Sun further elucidated BIWIN's investments in solutions, chip design, packaging and testing, and equipment development, and shared that with concentration on independent R&D and partnerships, BIWIN has now accumulated core strengths in these areas, and been capable of offering customers more high-efficiency and low-power solutions.  BIWIN's latest strategy not only involves a keen focus on the R&D and packaging and testing of mainstream memory, but shifts attention to more far-reaching development opportunities in high-end advanced packaging and testing technology. Powered by its dual-drive strategy, BIWIN is dedicated to further enhancing its competitiveness in the storage industry, and providing customers with innovative and cost-effective solutions.  Strategic Advanced Packaging and Testing Layout: Overcoming Industry Bottlenecks to Secure Future Advantages  In the face of the increasing technological demands and market challenges in the storage industry, BIWIN Storage is actively promoting its full-chain layout. Mr. Sun noted that, in addition to focusing on storage solution R&D, the company has also been a pioneer in establishing storage packaging capabilities in South China. By advancing its wafer-level packaging and testing layout, BIWIN has positioned itself as one of the few semiconductor storage companies capable of offering advanced packaging services.  With the adoption of cutting-edge technologies such as 3D/2.5D packaging, BIWIN Storage is able to deliver top-notch services to customers in reducing product power consumption, improving performance, and offering customized packaging and testing services for areas such as computing power. Mr. Sun emphasized that advanced packaging and testing is not only the consequence driven by market demand but is also the inevitable direction of future industry development. This layout will further solidify BIWIN Storage's leadership in the storage industry.  To accelerate the implementation of advanced packaging and testing, BIWIN Storage has chosen to establish an advanced packaging and testing factory in the Greater Bay Area. As a core hub of China's high-tech industry, the Greater Bay Area houses numerous IC design companies and innovative enterprises. However, there are still significant gaps in the packaging and testing field. BIWIN's advanced packaging and testing layout fills this gap and promotes the coordinated development of the entire industry chain.  Mr. Sun expressed that BIWIN Storage plans to launch its new plant in 2025 to provide more efficient and flexible packaging and testing services for customers in areas such as computing power. This layout will not only strengthen the company's competitiveness in the storage market but also inject new vitality into the Greater Bay Area's innovation ecosystem.  Integrated R&D and Packaging 2.0 Strategy: Building Core Advantages to Strengthen Customer Loyalty  In the summary of the "Integrated R&D and Packaging 2.0 Strategy", Sam Sun emphasized that the core of this strategy lies in enhancing BIWIN's core competitiveness in the storage industry through technological innovation and full-chain collaboration, while establishing closer partnerships with clients. The main advantages of this strategy are reflected in the following four aspects:  01 Expanding Industry Coverage  The Strategy contributes to enhancing collaboration with upstream wafer fabs to maintain control over R&D, manufacturing, and mass production, while serving a wider range of customers and expanding the industry chain through the application of advanced packaging and testing technologies.  02 Enhancing Technological Barriers  The Strategy contributes to strengthening technological innovation by increasing R&D investment, and participating in more high-end application scenarios, so as to gain a unique market advantage and secure a technological edge in the competitive landscape.  03 Driving Innovation and Differentiation  The Strategy contributes to offering products with higher bandwidth, lower power consumption to the market by developing differentiated solutions, more complex packaging processes, and advanced memory architectures, showcasing BIWIN's technological strength in the industry.  04 Strengthening Customer Loyalty and Trust  The Strategy contributes to providing high-quality and customized solutions, along with comprehensive technical and service support, to strengthen customer relationships and trust and achieve mutual success through deep collaboration with customers.  Looking Ahead: Focusing on Dual-Drive Strategy to Elevate Customer Value  In the end, Mr. Sun concluded BIWIN Storage's vision with the phrase "BIWIN, WIN-WIN". He emphasized that BIWIN Storage will continue its dual-drive strategy of storage and advanced packaging and testing to join hands with customers to seize future opportunities in the storage industry. BIWIN Storage aims to be more than just a storage product provider — it strives to be a trusted all-around partner, driving technological innovation and commercial success together with its customers.
Key word:
Release time:2024-11-08 13:45 reading:1244 Continue reading>>
GigaDevice GD32F30x Software Test Library (STL) Achieves TÜV Rheinland IEC 61508 Functional Safety Certification
  GigaDevice, a leading semiconductor company specializing in Flash Memory, 32-bit Microcontrollers (MCUs), Sensors, and Power Management technologies announced that its GD32F30x Software Test Library (STL) has received IEC 61508 SC3 (SIL 2/SIL 3) functional safety certification from TÜV Rheinland. This certification follows the earlier certification of the GD32H7 Software Test Library (STL), demonstrating that GigaDevice has established a comprehensive presence in the field of functional safety. The company now offers software test libraries for both high-performance Arm® Cortex®-M7 core MCUs and mainstream Arm® Cortex®-M4 core MCUs, providing users with a broader range of product options for industrial applications. These achievements highlight GigaDevice’s commitment to product safety and reliability, as well as its expertise and advancements in the field of functional safety.  The GD32F30x STL software test library is designed to ensure the safe operation of the GD32F30x series MCUs. It monitors the status of core units such as the internal CPU/DPU, FPU, and MPU, and conducts regular checks on memory like SRAM and Flash to quickly identify random hardware faults. Upon detecting a fault, the GD32F30x Software Test Library (STL) immediately triggers a preset safety response mechanism, placing the MCU in a safe state, thereby mitigating potential risks and providing users with time to address and rectify system failures. Additionally, it offers comprehensive documentation, including FMEDA and safety manuals, to ensure that the product meets specific safety requirements throughout the design, development, and production processes.  Vincent Li, GigaDevice CTO and General Manager of MCU BU, stated: "As industrial automation and intelligence continue to evolve, the importance of functional safety becomes increasingly evident. The consecutive IEC 61508 SC3 (SIL 2/SIL 3) functional safety certifications for the GD32H7 STL and GD32F30x STL demonstrate that GigaDevice has established a mature management system in the functional safety field. This is crucial for enhancing the overall competitiveness of our GD32 MCU products and enabling users to develop products that meet functional safety standards in a shorter timeframe. Meanwhile, the certification process for the GD32 MCU software test library based on the Arm® Cortex® M33 core is also progressing concurrently. We will continue to align with international standards and drive technological advancements and product upgrades.”  Bin Zhao, General Manager Cybersecurity & Functional Safety Greater China of TÜV Rheinland stated: Congratulations to GigaDevice for once again obtaining TÜV Rheinland's STL functional safety certification! GigaDevice's steadfast commitment to functional safety reflects its dedication to stringent safety standards, which we highly commend. In the future, we will continue to uphold professional technical requirements, adhere to rigorous certification processes, and deepen our collaboration to support GigaDevice in achieving further breakthroughs in the field of functional safety.”  About GigaDevice  GigaDevice Semiconductor Inc. (SSE Stock Code 603986) is a global leading fabless supplier. The company was founded in April 2005 and headquartered in Beijing, China, with branch offices in many countries and regions worldwide, providing local support at customers' fingertips. Committed to building a complete ecosystem with four major product lines – Flash memory, MCU, sensor and analog – as the core driving force, GigaDevice can provide a wide range of solutions and services in the fields of industrial, automotive, computing, consumer electronics, IoT, mobile, networking and communications. GigaDevice has received the ISO26262:2018 automotive functional safety ASIL D certification, IEC 61508 functional safety production certification, as well as ISO9001, ISO14001, ISO45001, and Duns certifications. In a constant quest to expand our technology offering to customers, GigaDevice has also formed strategic alliances with leading foundries, assembly, and test plants to streamline supply chain management.
Key word:
Release time:2024-11-07 14:00 reading:1573 Continue reading>>
Murata’s Type 1SC-NTN module achieves Skylo U.S. certification for cellular and non-terrestrial network connectivity
How to Discharge a Capacitor : A Step-by-Step Guide
  Capacitors are essential components in electronic circuits, storing electrical energy for later use. However, when working with capacitors, it’s crucial to handle them properly to ensure safety and prevent damage. One important aspect of working with capacitors is “How to Discharge a Capacitor”. In this guide, we’ll walk you through the steps to safely discharge a capacitor, why it’s necessary, and the precautions you should take.  What is capacitors?Before diving into the discharge process, it’s helpful to understand what capacitors are and how they function. A capacitor is an electrical component that stores and releases energy in the form of an electric charge. It consists of two conductive plates separated by an insulating material called a dielectric. When a capacitor is charged, it holds a voltage difference between its plates, which can persist even after power is disconnected.  Why Discharge a Capacitor?1. Safety: Capacitors can retain a significant amount of charge even after the power is turned off. Discharging a capacitor is crucial to avoid electric shocks or damage to electronic components.  2. Maintenance and Repair: When servicing electronic devices, discharging capacitors ensures that there are no residual charges that could interfere with repairs or adjustments.  3. Circuit Design: In some cases, you might need to discharge a capacitor to reset or test electronic circuits.  How to discharge a capacitor?1. Safety First: Power Off the Device  – Unplug the Device: Ensure the device or circuit is completely disconnected from the power source. This is the most critical step in preventing electrical shocks.  – Wait for a Safe Period: Even after disconnecting power, give the capacitor some time to self-discharge. However, don’t rely solely on this; always use proper discharge methods.  2. Use Proper Discharge Tools  – Discharge Tool: For high-voltage capacitors, it’s advisable to use a dedicated capacitor discharge tool, which often includes a resistor to safely dissipate the charge.  – Insulated Tools: For lower-voltage capacitors, you can use insulated screwdrivers or pliers.  3. Discharge Process  – Connect the Discharge Tool: If using a discharge tool with a resistor, connect it across the capacitor’s terminals. If using a screwdriver, carefully touch the insulated handle to both terminals, ensuring you don’t touch the metal parts directly.  – Hold for a Few Seconds: Allow the tool to stay in contact with the terminals for several seconds to ensure the capacitor is fully discharged.  4. Verify the Capacitor is Discharged  – Use a Multimeter: To confirm that the capacitor is completely discharged, use a multimeter to check the voltage across the terminals. A reading close to 0 volts indicates that the capacitor is safe to handle.  5. Dispose of or Store Safely  – Handling: Once discharged, handle the capacitor with care. If it’s to be reused, store it in a safe location where it won’t accidentally get recharged or come into contact with conductive materials.  – Disposal: If you need to dispose of the capacitor, follow local electronic waste disposal regulations to ensure environmentally responsible handling.  Precautions  – Never Short the Terminals Directly: Directly shorting the capacitor terminals with a metal object can cause sparks, heat, and potential damage.  – Use Insulated Equipment: Always use tools with proper insulation to avoid accidental electric shocks.  – Handle with Care: Even discharged capacitors can have residual charges. Handle them carefully to avoid any accidental charge buildup.  ConclusionDischarging a capacitor is a straightforward but essential task when working with electronic devices. By following these steps and taking the necessary precautions, you can ensure both your safety and the proper functioning of your electronic components. Always prioritize safety and use the appropriate tools to handle capacitors effectively. With these practices, you’ll be better equipped to handle capacitors in various electronic applications.
Key word:
Release time:2024-09-25 15:20 reading:948 Continue reading>>
ROHM's 4th Generation SiC MOSFET Bare Chips Adopted in Three EV Models of ZEEKR from Geely
  ROHM has announced the adoption of power modules equipped with 4th generation SiC MOSFET bare chips for the traction inverters in three models of ZEEKR EV brand from Zhejiang Geely Holding Group (Geely), a top 10 global automaker. Since 2023, these power modules have been mass produced and shipped from HAIMOSIC (SHANGHAI) Co., Ltd. - a joint venture between ROHM and Zhenghai Group Co., Ltd. to Viridi E-Mobility Technology (Ningbo) Co., Ltd, a Tier 1 manufacturer under Geely.  Geely and ROHM have been collaborating since 2018, beginning with technical exchanges, then later forming a strategic partnership focused on SiC power devices in 2021. This led to the integration of ROHM’s SiC MOSFETs into the traction inverters of three models: the ZEEKR X, 009, and 001. In each of these EVs, ROHM’s power solutions centered on SiC MOSFETs play a key role in extending the cruising range and enhancing overall performance.  ROHM is committed to advancing SiC technology, with plans to launch 5th generation SiC MOSFETs in 2025 while accelerating market introduction of 6th and 7th generation devices. What’s more, by offering SiC in various forms, including bare chips, discrete components, and modules, ROHM is able to promote the widespread adoption of SiC technology, contributing to the creation of a sustainable society.  ZEEKR Models Equipped with ROHM’s EcoSiC™The ZEEKR X, which features a maximum output exceeding 300kW and cruising range of more than 400km despite being a compact SUV, is attracting attention even outside of China due to its exceptional cost performance. The 009 minivan features an intelligent cockpit and large 140kWh battery, achieving an outstanding maximum cruising range of 822km. And for those looking for superior performance, the flagship model, 001, offers a maximum output of over 400kW from dual motors with a range of over 580km along with a four-wheel independent control system.  About ZEEKRZEEKR was launched in 2021 as the dedicated EV brand of Geely, a leading Chinese automaker that also owns well-established premium brands such as Volvo Cars and Lotus Cars. The name ZEEKR combines ZE, representing ZERO, the starting point of infinite possibilities, E for innovation in the electric era, and KR, the chemical symbol for krypton, a rare gas that emits light when energized. ZEEKR’s philosophy centers on harmonizing humanity, technology, and nature, aiming to redefine the perception of electric vehicles through innovative designs and technologies. The brand has garnered praise in markets outside of China, including in the US and Europe, for its impressive driving performance and range, with plans to expand sales to Western and Northern Europe.  Please visit ZEEKR's website for more information: https://zeekrglobal.com/  Market Background and ROHM’s EcoSiC™In recent years, there has been a push to develop more compact, efficient, lightweight electric systems to expand the adoption of next-generation electric vehicles (xEVs) and achieve environmental goals such as carbon neutrality. For electric vehicles in particular, improving the efficiency of the traction inverter, a key element of the drive system, is crucial for extending the cruising range and reducing the size of the onboard battery, heightening expectations for SiC power devices.  As the world’s first supplier to begin mass production of SiC MOSFETs in 2010, ROHM continues to lead the industry in SiC device technology development. These devices are now marketed under the EcoSiC™ brand, encompassing a comprehensive lineup that includes bare chips, discrete components, and modules. For more information, please visit the SiC page on ROHM’s website: https://www.rohm.com/products/sic-power-devices   EcoSiC™ BrandEcoSiC™ is a brand of devices that utilize silicon carbide (SiC), which is attracting attention in the power device field for performance that surpasses silicon (Si). ROHM independently develops technologies essential for the evolution of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  EcoSiC™ is a trademark or registered trademark of ROHM Co., Ltd.  Supporting InformationROHM is committed to providing application-level support, including the use of in-house motor testing equipment Additionally, by clicking on the URL below, users can access various supporting contents on ROHM’s website that facilitate the evaluation and introduction of 4th generation SiC MOSFETs, such as SPICE and other design models, simulation circuits for common applications (ROHM Solution Simulator), and evaluation board information.  https://www.rohm.com/products/sic-power-devices/sic-mosfet#supportInfo
Key word:
Release time:2024-09-03 10:42 reading:929 Continue reading>>
AMEYA360 invites you to attend Electronica Munich, Germany!
  The 2024 Munich International Electronic Fair (Electronica) will be held from November 12 to 15 at the Munich Trade Fair Center.Our booth location : B5-520.  Germany Munich Electronics Fair (Electronica), since its inception in 1964, has developed into Europe and even the world's largest and far-reaching electronic components professional exhibition. Every year, the elites of the global electronics industry gather in Munich to review the brilliant achievements of the electronics industry in the past two years and look forward to the future development of the electronics market.  As an excellent stage for industry elites to understand the market news and catch the latest information, the Munich Electronics Fair in Germany brings together the latest innovations of the world's leading electronics companies. Many professional visitors were not only attracted by the release of new products and technologies, but also gained a lot from finding partners and signing cooperation agreements.  The 2022 electronica was an even bigger success, with 14 specialized halls and 2,140 companies from 51 countries and regions, more than 60% of which came from outside Germany. At the same time, 69,783 visitors from 102 countries and regions attended the fair, making it a great success.  AMEYA360, as the industry's leading global one-stop procurement platform for electronic components, will be participated this exhibition. We sincerely invite you to visit Booth 520 in Hall B5 to discuss the development of the industry and participate in the industry big event, and sincerely cooperate with all sectors of society to create a brilliant future blueprint and write a new chapter in development!  Exhibition Overview  Time: November 12 - November 15, 2024  industry: Electronic components  Organizer:Messe Munchen International, Germany  Location: Munich Trade Fair Center, Germany  Holding cycle: every two years  Hall plan:  Range of exhibits  Cars; Display; Electromechanical and system peripherals; Electronic Design (ED/EDA); Embedded system; Electronic Manufacturing Services (EMS); Semiconductor; PCB and other circuit carriers; Test and measurement; Micro-nano system; Passive component; Sensor technology; The service industry; Power supply; System components/assemblies and subsystems; The radio.  About AMEYA360  AMEYA360 Mall (www.ameya360.com)is a one-stop procurement platform for electronic components, independently developed and designed by Shanghai Huanghua Information Technology Co.Ltd. The platform has secured cooperation and authorization from numerous renowned domestic and international brand manufacturers. With diverse range of material categories abundant inventory, and a commitment to quality,AMEYA360 ensures a reliable source for electronic component procurement.  In addition to the online platform, AMEYA360 has also introduced the user-friendly [AMEYA Store] app, which combines various function such as searching, ordering, price quote, making payments, tracking logistics, accessing resources, finding component references, and exploring material replcements.  With its comprehensive features, AMEYA360 caters to the varied demands of the electronic information-related industries. These include small-scale component procurement, ordering for future needs, applying for product samples, and receiving technical support to meet the diverse needs of businesses in the electronics sector.  AMEYA360 will participated in the 2024 Munich Electronica,Germany, hope to discuss industry trends and future development with all business partners & customers in the industry, and explore a new model of innovative cooperation in the supply chain that currently facing many challenges.  AMEYA team is looking forward to see you in Munich this November!  If you are sourcing for any electronics components, you can scan the QR code below for inquiry. For more information, please email dukelee@ameya360.com or call +86 13916138705.
Key word:
Release time:2024-09-02 17:17 reading:2126 Continue reading>>
BIWIN Wins India's
  June 28th had witnessed the successful hosting of the 16th NCN-ICT India Partner Summit 2024 at New Delhi, India. In the midst of the celebrations, BIWIN was honored with the esteemed “The Most Extensive Range Memory Solutions Provider of 2023 Award”, a reflection of its unwavering dedication to excellence and innovation.  BIWIN is the Winner of “The Most Extensive Range Memory Solutions Provider of 2023”  As an annual event that celebrates the achievements and contributions of key players in the ICT industry, the NCN-ICT Summit Awards brought together industry leaders, corporate executives, distributors, and resellers from India and abroad. It serves as a platform for industry professionals to gain insights into the latest innovations, share best practices, and explore new business opportunities.  Through a combination of online voting and evaluations conducted by a panel of experts and judges, this accolade is a testament to BIWIN’s commitment to delivering a comprehensive range of high-performance memory solutions and pushing forward with innovation and product expansion.  Recognized as a leader in the storage industry, BIWIN offers a comprehensive range of embedded flash-based storage solutions, including mobile phones, education devices, tablets, gaming machines, smart wearables, UAVs, action cameras, in-vehicle systems, DVR/NVRs, servers, OTT boxes, routers, and more. By providing tailored storage solutions, BIWIN supports innovation and advancement in these diverse technology areas.  Attending on behalf of BIWIN, Rajesh Khurana, Country Manager for Consumer Business, was honored to participate in the NCN-ICT Summit & Awards Night 2024 and accept the awards. He expressed heartfelt gratitude for the industry recognition and committed to integrating purpose-driven initiatives into BIWIN’s future work. Khurana emphasized that these efforts will not only honor the awards but also elevate BIWIN to new industry heights.  Rajesh Khurana was also privileged to be part of a renowned panel at the 16th Annual NCN-ICT Partners Summit, which was joined by top industry leaders from Geonix, Savex, Synersoft, Kaspersky and Micron. The discussion focused on the next big thing in ICT technology and examined the need for new business approaches, emerging ICT technologies, and changing business dynamics, as well as their impact on the vendor-partner ecosystem.  As noted by Rajesh Khurana, industry projections indicate that the memory market is expected to experience continued growth in the coming years, especially with the advancement of AI technologies, big data and Internet of Things which set to drive the demand to new levels. BIWIN will also endeavor to provide improved memory solutions for customers while contributing to the industry’s future development.
Key word:
Release time:2024-08-20 13:46 reading:1228 Continue reading>>
GigaDevice GD32H7 Software Test Library (STL) Achieves TÜV Rheinland IEC 61508 Functional Safety Certification
  GigaDevice (Stock Code: 603986), a leading semiconductor company announced today that its GD32H7 Software Test Library (STL) has received the IEC 61508 SC3 (SIL 2/SIL 3) functional safety certification from TÜV Rheinland, an international independent testing, inspection, and certification organization. This marks the first STL certification awarded by TÜV Rheinland to a Chinese semiconductor company. By adopting the GD32H7 Software Test Library (STL), users can efficiently develop industrial applications that comply with international functional safety standards. This certification attests to GigaDevice's strong capabilities in developing industrial products and supporting software, demonstrating that GigaDevice's functional safety management has reached international standards.  The certification ceremony was attended by Vincent Li, GigaDevice CTO and General Manager of MCU BU, and Bin Zhao, General Manager Cybersecurity & Functional Safety Greater China from TÜV Rheinland, along with other representatives from both companies.  IEC 61508 is a globally recognized foundational standard for industrial functional safety. It provides a fundamental evaluation method for the entire safety lifecycle of electrical, electronic, and programmable electronic (E/E/PE) systems and products used in safety applications. The standard comprehensively covers all aspects including functional safety management, system, hardware, software phases, support processes, safety analysis, product reliability, and product release. It aims to control the risks associated with systematic failures and random hardware failures to an acceptable level. To conclude, IEC 61508 has already become a crucial reference standard in key industries such as industrial, energy, water transport, and railways etc. Obtaining this certification is essential for entering industries that require advanced functional safety.  With the development of digitalization and intelligent technology, the importance of functional safety is increasing in industries such as industrial automation and digital energy. The GD32H7 Software Test Library (STL) with its exceptional detection capabilities, can accurately identify random hardware faults in safety-critical components like CPUs, SRAM, and Flash. This helps users flexibly utilize the GD32H7 series of ultra-high performance MCUs in developing complex computations, multimedia technologies, edge AI, and other advanced applications, significantly reducing safety risks. And the GD32H7 STL can be widely applicable to various end-user scenarios and can guarantee the reliability and safety of industrial applications. Besides, the Software Test Library will also be compatible with the GD32MCU that uses the same Arm® Cortex® M7 core. Furthermore, GigaDevice is actively advancing the certification of Software Test Library based on Arm® Cortex® M4 and Arm® Cortex® M33 cores, with plans to release soon. The significant initiatives will further strengthen GigaDevice's technological advantages in functional safety and meet the safety needs of various industry applications.  Vincent Li, GigaDevice CTO and General Manager of MCU BU, stated: "GigaDevice is unwavering in the commitment to excellence in quality, adopting a quality policy that involves full employee participation and entire product lifecycle coverage. The industrial sector is an important strategic focus for us, where we place significant emphasis on the functional safety of products and applications. We are deeply appreciative to the professional team at TÜV Rheinland for their assistance and recognition. Obtaining IEC 61508 SC3 (SIL 2/SIL 3) certification is a significant milestone for GigaDevice in functional safety management. It will greatly enhance the safety and ease of developing industrial applications for our users. In the future, we plan to progressively integrate this international standard to a broader product line, continuously reinforcing the reliability of our products and software, while driving the advancement of industry functional safety standards."  Bin Zhao, General Manager Cybersecurity & Functional Safety Greater China of TÜV Rheinland stated: "Congratulations to GigaDevice for becoming the first Chinese semiconductor company to receive the TÜV Rheinland STL certification! As an international third-party certification organization with a 150-year history, TÜV Rheinland is dedicated to providing technical support for the quality and safety of products and systems. During the project, our technical experts conducted a comprehensive safety verification of the GD32H7 STL throughout its lifecycle with a meticulous and responsible approach. We are very pleased to see that GigaDevice has met international standards in functional safety. In the future, we will continue to strengthen our collaboration to enhance the safety and reliability of GigaDevice's products, aiming to build outstanding market competitiveness."
Key word:
Release time:2024-08-19 15:48 reading:1892 Continue reading>>

Turn to

/ 93

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
model brand To snap up
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code