BIWIN Mini SSD Earns Dual Honors: TWICE Picks Award and AVRONA Most Innovative Award
  Recently, BIWIN’s innovative product Mini SSD was honored with multiple international awards at CES 2026, earning the TWICE 2026 Picks Awards Winner as well as the AVRONA Most Innovative Award.  With its breakthrough design philosophy and strong technical capabilities, this “small form factor, superior performance” storage solution not only continues BIWIN’s legacy of technological innovation, but also aligns seamlessly with the accelerating evolution of edge AI.  Technological Breakthroughs Addressing Core Storage Challenges  Conventional consumer storage solutions have long struggled to balance performance, portability, and expandability. BIWIN Mini SSD overcomes these limitations through three key innovations:  AdvancedLGA packaging, compressing the form factor to just 15 × 17 × 1.4 mm (approximately the size of half a coin) and supporting capacities from 512GB to 2TB;  PCIe 4.0 ×2interface with NVMe 1.4 protocol, delivering read speeds of up to 3700MB/s and write speeds of 3400MB/s, far surpassing traditional storage card solutions and rivaling mainstream consumer-grade M.2 SSDs;  An industry-first standardized slot-in SSD design, enabling effortless TB-level expansion through a simple “open – insert – lock” three-step process, dramatically simplifying storage upgrades.  Small in Size, Big in Capability: Empowering Two Key Tracks  For consumers, BIWIN Mini SSD introduces a new level of convenience as no specialized tools are required for individuals to expand storage capacity, and its flagship-class performance is capable of supporting smooth operation of intelligent devices.  For device manufacturers, its standardized interface, modular architecture, and scalability significantly streamline BOM management, reduce manufacturing, inventory, and after-sales costs, and support optimization across the entire product lifecycle.  The product has already entered deep collaborations with well-known brands such as One-Netbook (ONEXPLAYER) and GPD, helping partners build differentiated competitive advantages in the market.  Global Recognition Validating Technical Excellence  Leveraging its ultra-compact design, high scalability, and reliable performance, BIWIN Mini SSD is redefining the integrated paradigm between AI terminals and storage technologies. Thanks to its disruptive innovation, the product was selected for TIME’s “Best Inventions of 2025”, becoming the only storage product worldwide to make the list.  It subsequently won the “Best-in-Show” Award at Embedded World North America 2025, earning strong endorsement from industry authorities for both its technological advancement and commercialization potential. The dual awards at CES 2026 further reinforce the product’s real-world value and promising market outlook.  Most notably, the latest achievement marks another milestone: BIWIN Mini SSD has been shortlisted as a finalist for the 2026 Edison Awards, often referred to as the “Oscars of Innovation.” This prestigious recognition, honoring the world’s most outstanding innovations, adds another heavyweight accolade to BIWIN Mini SSD’s growing global honors portfolio.
Key word:
Release time:2026-02-06 17:44 reading:215 Continue reading>>
MQ771-GL: Fibocom’s Compact Cat.M Module Enters Sampling, Driving Asset Tracking Innovation
  Fibocom (300638.SZ | 0638.HK), a global leader in wireless communicationmodules and AI solutions, announced that its Cat.Mmodule MQ771-GL has entered the engineering sample stage. Withits ultra-compact size, low power consumption,global frequency coverage, and stable network compatibility,the MQ771-GL offers a cost-effective IoT solution for asset tracking, enablinglong battery life, high reliability, and precise positioning for large-scaleLPWA deployments.  Dual-Mode Support for FlexibleDeployment  The MQ771-GL supports 3GPP Release 14Cat.M1 and NB-IoT standards and is compatible with mainstream frequencybands worldwide, making it ideal for LPWA network deployments across NorthAmerica, Europe, Asia, and beyond. This global compatibility ensuresreliable connectivity for asset tracking devices and enables flexible operationeven in complex or challenging environments.  Compact Size with Ultra-Low Power Consumption  Leveraging advanced power managementtechnologies, the MQ771-GL supports PSM (Power Saving Mode) and eDRX (extendedDiscontinuous Reception), dramatically extending device battery life. InPSM mode, standby current drops to the microampere (μA) level, cutting powerconsumption by 75% compared with the previous generation — ideal for smartwater meters. In eDRX mode, power usage is reduced by 90%, making itsuitable for gas meters, asset trackers, and other long-term outdoor devices,enabling multi-year operation.  The module’s 17.7mm × 15.8mm LGA package is compatible with the pin layout of Fibocom’s Cat.1 modules, supportingflexible product iteration. Its compact form factor is well-suited forspace-constrained tracking devices, simplifying integration and deployment.  Enhanced Performance with Rich InterfaceOptions  The MQ771-GLsupports MQTT, CoAP, LwM2M and standard interfaces like UART, I2C,and I2S, making it adaptable for diverse asset tracking terminals. Itintegrates Soft GPS for precise real-time positioning and features a hardware-levelsecurity engine for encrypted, secure communications, protecting againstunauthorized access.  Liu Sunzhi,General Manager of Fibocom’s MTC Business Unit, commented:  "With the MQ771-GL now entering the engineering sample stage, itsultra-compact, ultra-low-power design is set to lower development barriers forasset tracking terminals and accelerate large-scale IoT connectivity. Movingforward, we will continue to strengthen collaborative innovation with verticalindustries, driving the rapid commercialization of low-power, wide-connectivitysolutions for asset tracking and other IoT applications."
Key word:
Release time:2026-02-06 17:41 reading:209 Continue reading>>
ROHM’s New LDO Regulators with 500mA Output Current Achieving Stable Operation Even with Ultra-small Capacitors to Expand Design Flexibility for High-current Applications
  ROHM has developed the “BD9xxN5 Series” of LDO regulator ICs with 500mA output current, featuring its proprietary ultra-stable control technology “Nano Cap™”. This series comprises 18 products designed for 12V/24V primary power supply applications used in automotive equipment, industrial equipment, and communication infrastructure.  In recent years, electronic devices have demanded higher density in smaller form factors at the same time. To meet this demand and achieve space savings and design flexibility, power supply ICs must be capable of stable operation even with small-capacity capacitors. However, achieving such performance with output capacitors of 1µF or less has been technically difficult.  To address this challenge, ROHM developed the “BD9xxN1 Series” LDO regulator (150mA output current) in 2022, incorporating its proprietary ultra-stable control technology, “Nano Cap™”. This innovation enables stable operation with output capacitors as small as 100nF, earning widespread adoption across numerous applications.  The newly developed BD9xxN5 Series builds on the success of the BD9xxN1 Series by increasing the output current to 500mA – more than three times higher than before – significantly broadening its suitability for applications requiring higher power. In addition, very low output voltage ripple of approximately 250mV (with load current variation of 1mA to 500mA within 1µs) is achieved with a small output capacitance of just 470nF (typical). Beyond standard small MLCCs (multi-layer ceramic capacitors) in the range of several µF and large-capacity electrolytic capacitors, it also supports ultra-small MLCCs, such as the 0603M size (0.6mm × 0.3mm), with capacities below 1µF – where stability was previously difficult to achieve. This contributes to space saving as well as greater flexibility in component selection.  Furthermore, high-precision SPICE models, “ROHM Real Model” are provided for accurate simulation and can be downloaded from the ROHM official website.  SPICE Models: BD900N5xxx-C BD933N5xxxx-C BD950N5xxxx-C  ROHM will continue to contribute to the high performance, miniaturization, and high reliability of electronic devices by further expanding its Nano Cap™ technology-equipped LDO series.  Application Examples  Automotive Equipment  ● Powertrain system power supplies for fuel injection systems (FI) and tire pressure monitoring systems (TPMS)● Body system power supplies for body control modules (BCM)● Infotainment system power supplies for clusters ad head-up displays (HUD), etc.Industrial Equipment  ● Power supplies for controllers like Programmable Logic Controllers (PLC), Remote Terminal Units (RTU), and industrial gateways● High-precision LDOs for analog loads and sensors measuring temperature, pressure, flow rate, etc.● Power supplies for monitoring and control panels in disaster prevention systems, access control systems and building automation.● Standby power supplies for Human-Machine Interfaces (HMI) and panel equipment, etc.Consumer Electronics  ● Power supplies for control boards in refrigerators, dishwashers, air conditioners, etc.● Power supplies for home appliances like thermostats and doorbells● Power supplies for constant power applications in home security and network equipment, etc.  What is Nano Cap™ Technology?  Nano Cap™ refers to ultra-stable control technology achieved by combining advanced analog expertise covering circuit design, processes, and layout utilizing ROHM’s vertically integrated production system. Stable control eliminates the problem of unstable operation related to capacitors in analog circuits, contributing to a reduction in design resources for a wide range of applications in automotive, industrial equipment, consumer, and other fields.  Terminology  Primary  In a power supply circuit, the side in charge of 1st stage conversion from a power source such as a battery is called the primary and the side responsible for 2nd stage conversion is referred to as the secondary.  LDO Regulator (Low Drop Out Regulator / Low Saturation Regulator)  A type of power supply IC that converts between two different DC voltage levels. Falls under the category of linear regulator (where the input/output voltages operate linearly) characterized by a small input-output voltage difference. Compared to DC-DC converter ICs (switching regulators), LDOs feature a simpler circuit configuration and lower noise.  ROHM Real Model  A high-accuracy simulation model that make it possible to also achieve a perfect match between the actual IC and simulation values utilizing ROHM’s proprietary model-based technology.
Key word:
Release time:2026-01-27 13:47 reading:308 Continue reading>>
Industry’s Highest* Rated Power! ROHM Unveils the UCR10C Series of Sintered Metal Shunt Resistors
  ROHM has developed the “UCR10C Series”, which has the industry's highest rated power for 2012-size shunt resistors (10 mΩ to 100 mΩ).  Shunt resistors are required to handle higher power for current sensing in both the automotive and industrial equipment markets. Additionally, specific requirements for high junction reliability in these markets has increased annually.  ROHM’s new products form a copper-based resistive element on an alumina substrate via sintering. By optimizing the heat dissipation structure, it achieves rated powers of 1.0W and 1.25W-double that of equivalent-sized products including thick film types and metal plate types. This enables the replacement of products with wide terminal types or larger alternatives, facilitating miniaturization and reducing the number of components required.  Furthermore, the use of a metal resistive element achieves a low TCR (0 to +60 ppm/°C). This minimizes errors due to temperature changes, enabling high-precision current sensing. Moreover, it achieves the same level of durability as the metal plate types in temperature cycle testing (-55°C / +155°C, 1000 cycles). This ensures high bonding reliability even in applications with extreme temperature fluctuations, such as automotive use, enabling stable, long-term operation.  This series is fully lead-free. No lead materials are present, even in RoHS-exempted areas, thus reducing environmental impact.  As part of its future expansion plans, ROHM has also commenced development of the 3216-size (2W) sintered metal shunt resistor, the “UCR18C Series”, further enhancing its product line-up that combines high power, high precision and high reliability.  Application Examples  Various current detection applications in automotive, industrial equipment, and consumer electronics.  Terminology  Thick Film Types  A chip resistor using a material called metal glaze as the resistive element. In addition to cost advantages, the thick film resistive element provides superior resistance to pulses and surges.  Metal Plate Types  A chip resistor using a metal plate as the resistive element. It offers superior thermal dissipation and achieves high precision through low TCR, providing performance advantages.  Wide Terminal Types  A structure where the electrodes are positioned along the long side of the chip resistor body. Compared to the common structure with electrodes along the short side, it improves heat dissipation efficiency and enables high-power handling.  TCR (Temperature Coefficient of Resistance)  An indicator showing how much a resistor's resistance value changes with temperature. A lower value means less resistance variation due to temperature fluctuations, providing more stable performance.  The TCR of the UCR10C varies depending on the resistance value. Furthermore, the listed TCR is the guaranteed value for the +25/+155°C range for the 10mΩ product.
Key word:
Release time:2026-01-22 11:30 reading:1213 Continue reading>>
GigaDevice Partners With Melchioni Electronics to Expand Business in France, Italy and the Iberian Peninsula
  GigaDevice, a leading semiconductor company specializing in Flash memory, 32-bit microcontrollers (MCUs), sensors, and analog products, has entered into a distribution agreement with Milan-based Melchioni Electronics.  The partnership extends GigaDevice's reach into several major European markets, with Melchioni Electronics supplying not only GigaDevice's leading Flash and MCU lines but also delivering dedicated field application engineering support. The deal covers distribution in France, Italy, Spain and Portugal, with on-the-ground presence in each of these countries.  GigaDevice delivers world-class SPI NOR Flash, SLC NAND Flash, 32-bit microcontrollers, analog, and sensor products. These technologies play a pivotal role across applications including industrial automation, automotive, consumer electronics, IoT, network communications, mobile, and PCs.  "The establishment of this partnership and the accelerated entry into the European markets are significant steps in our strategy," said Dr. Reiner Jumpertz, GigaDevice VP and General Manager in the EMEA region. "Melchioni has an exceptional reputation and is well-known for its deep engineering expertise. Their regional FAE and marketing teams perfectly support our successful growth plans in Europe.”  “This strategic agreement with GigaDevice delivers substantial value to our customer base,” stated Elisabetta Dell’Olio, Head of Technology & Suppliers Platform at Melchioni Electronics. “Our core mission is to empower enterprises with the most effective and cutting-edge technologies. By adding GigaDevice’s world-class Flash memory solutions and GD32 microcontrollers (MCUs) to our services, we are significantly elevating our offering across the automotive, industrial automation, and consumer electronics sectors.”  About Melchioni Electronics  Melchioni Electronics is a prominent company specializing in the distribution and integration of high-quality electronic solutions. With a strong reputation in the industry, Melchioni Electronics serves a diverse range of industrial sectors. The company is known for its expertise in providing electronic components and its ability to tailor customized solutions to meet the unique needs of its clients. Melchioni Electronics is committed to innovation and excellence, continually pushing the boundaries of technology to deliver cutting-edge electronic solutions to its customers. With a focus on quality, reliability, and customer satisfaction, Melchioni Electronics is a trusted partner for businesses seeking advanced electronic solutions and integration services.  About GigaDevice  GigaDevice Semiconductor Inc. is a global leading fabless supplier. Founded in April 2005, the company has continuously expanded its international footprint and established its global headquarters in Singapore in 2025. Today, GigaDevice operates branch offices across numerous countries and regions, providing localized support at customers' fingertips. Committed to building a complete ecosystem with major product lines – Flash memory, MCU, sensor and analog – as the core driving force, GigaDevice can provide a wide range of solutions and services in the fields of industrial, automotive, computing, consumer electronics, IoT, mobile, networking and communications. GigaDevice has received the ISO26262:2018 automotive functional safety ASIL D certification, IEC 61508 functional safety product certification, as well as ISO9001, ISO14001, ISO45001, and Duns certifications. In a constant quest to expand our technology offering to customers, GigaDevice has also formed strategic alliances with leading foundries, assembly, and test plants to streamline supply chain management.
Key word:
Release time:2026-01-20 15:00 reading:1270 Continue reading>>
A new choice for high-accuracy, highly compatible current sensing: NOVOSENSE launches the NSCSA21x-Q series high-precision current sense amplifiers
  NOVOSENSE has launched the NSCSA21x-Q series high-precision current sense amplifiers, offering a –2V to 28V common-mode input range, ultra-low ±5μV offset voltage, 130dB CMRR, and 200kHz bandwidth. Designed to meet the needs of new energy vehicles, server power supplies, telecom power systems, and energy storage, the NSCSA21x-Q series delivers exceptional accuracy and system stability in demanding environments.  Addressing Key Challenges in Modern Power and Automotive Systems  As automotive electrification and industrial intelligence advance, current sensing accuracy and system stability have become critical to overall performance. Traditional current sensors often face limitations in low-voltage detection, reverse connection protection, and dynamic response, impacting system reliability and efficiency. The NSCSA21x-Q series directly targets these pain points, overcoming three major challenges in precision current detection:  (1) High-Precision Motor Phase Current Sampling  Supports bidirectional current sensing in H-bridge structures. Combined with FOC algorithms, it enables ±0.5° electrical angle control for precise motor performance.  (2) Suppression of Parasitic Inductance Interference  In low-side sensing, the NSCSA21x-Q effectively mitigates “ground bounce” effects through PWM rejection, maintaining high accuracy even with small current signals. With a 130dB CMRR and only ±5μV input offset, it ensures signal integrity under severe transient conditions.  (3) Reverse Battery Protection  Withstands up to –28V reverse voltage, safeguarding the system against battery misconnection and simplifying protection circuit design.  Robust Performance Across All Operating Conditions  Breaking conventional design limits, the NSCSA21x-Q series supports a wide –2V to 28V common-mode range with built-in PWM suppression and chip-level reverse-voltage tolerance. Even under –28V reverse common-mode stress, the device quickly resumes normal operation. In rigorous transient tests (–2V to 12V step change), it achieves a <5μs recovery time and <50mV output disturbance, making it ideal for high-accuracy current detection in motor drives and solenoid control under PWM switching environments.  Precision and Stability Across Temperature Extremes  Featuring a ±5μV (typical) input offset voltage and ±0.5% maximum gain error, the NSCSA21x-Q maintains outstanding accuracy over a full –40°C to 125°C temperature range. With a temperature drift as low as 0.05μV/°C, it ensures stable measurements in harsh automotive and industrial conditions.Input Offset Voltage Distribution of NSCSA21x-Q SeriesCommon-Mode Rejection Ratio (CMRR) Distribution of NSCSA21x-Q Series  Fast Dynamic Response and Strong Transient Protection  With a 200kHz bandwidth (50V/V gain) and a 2V/μs slew rate, the NSCSA21x-Q supports fast current variation monitoring and real-time protection. Compared to mainstream alternatives, it achieves up to 3× faster transient response, meeting the needs of high-speed applications such as motor control and power protection.  Flexible Configurations with Automotive-Grade Reliability  The NSCSA21x-Q series offers four fixed gain options (50V/V, 75V/V, 100V/V, and 200V/V), covering both industrial and automotive versions. Packaged in an ultra-compact SC70-6 (2mm × 1.25mm) footprint, it's pin-compatible with industry standards, enabling smaller system size and higher design efficiency.Four Fixed-Gain Versions of the NSCSA21x-Q Series  The NSCSA21x-Q series is AEC-Q100 Grade 1 qualified, supporting –40°C to +125°C operation and ensuring long-term reliability in automotive environments.
Key word:
Release time:2026-01-15 17:20 reading:1357 Continue reading>>
NOVOSENSE launches automotive- and industrial-grade NSCSA240-Q series current sense amplifiers to address PWM transient interference challenges
  NOVOSENSE announced the launch of its new bidirectional current sense amplifier series, NSCSA240-Q, covering both industrial and automotive versions, designed for high-voltage PWM systems in vehicles and industrial equipments. The NSCSA240-Q series integrates enhanced PWM rejection technology, supporting bidirectional current sensing with exceptional transient immunity, automotive-grade precision, and flexible configurability. Featuring an ultra-wide input common-mode range from –4V to 80V, a typical input offset voltage of ±5μV, and a 135dB DC Common-Mode Rejection Ratio (CMRR). This series effectively tackles the challenge of high-frequency transient interference in PWM systems, providing a highly reliable current monitoring solution for automotive electronic power steering (EPS), motor drive, industrial automation and other applications. The NSCSA240-Q series meets the AEC-Q100 automotive reliability standard.  Superior Transient Immunity: Reliable Performance in High-Voltage PWM Environments  In PWM systems, rapid switching can cause severe common-mode voltage fluctuations that distort output signals in conventional amplifiers. The NSCSA240-Q series achieves an AC CMRR of 90dB at 50kHz, effectively suppressing ΔV/Δt transients. Its proprietary transient suppression design reduces output disturbances by up to 80%, achieving a recovery time of less than 10μs under 80V common-mode voltage transients. With a bandwidth ranging from 450kHz to 600kHz (gain-dependent), it supports both high-speed overcurrent protection and accurate low-frequency PWM signal capture—ensuring stable, low-noise signal performance for EPS, motor drive and industrial motor control systems. The wide –4V to 80V input common-mode range offers broad dynamic capability and robust tolerance across 12V, 24V, and 48V vehicle power architectures. Furthermore, ±2000V ESD protection (HBM/CDM) enhances resistance to external electrical disturbances, ensuring overall system reliability.NSCSA240-Q Series Application Diagram  Automotive-Grade Precision: ±5μV Offset and ±0.1% Accuracy Across –40°C to 125°C  Designed to meet the increasingly stringent current measurement requirements of automotive electronics, the NSCSA240-Q series delivers exceptional measurement stability. It features a typical input offset voltage of only ±5μV (maximum ±25μV) and achieves ±0.1% accuracy over a wide temperature range (–40°C to 125°C). With a typical gain error of 0.05%, it ensures reliable and consistent current monitoring even under harsh conditions. Fully qualified to the AEC-Q100 automotive standard, the series guarantees long-term reliability in demanding in-vehicle environments.  Flexible Integration: Multiple Gain and Package Options for Design Optimization  As automotive systems trend toward miniaturization and integration, the NSCSA240-Q series is engineered for flexible and space-efficient design. It offers four fixed gain options—20V/V, 50V/V, 100V/V, and 200V/V—supporting shunt resistors ranging from 10mΩ to 0.1mΩ for flexible current detection. The series is available in two compact packages: SOIC-8 (4.9mm × 3.91mm) and TSSOP-8 (3mm × 4.4mm), allowing easy integration into space-constrained motor controller PCBs and helping designers optimize system layouts within limited board area.NSCSA240-Q Series Package
Key word:
Release time:2026-01-12 13:52 reading:849 Continue reading>>
A Comprehensive Guide to Choosing Between LDO (Low Dropout Linear Regulators) and DC-DC (Switching Regulators)
  Selecting the appropriate voltage regulator is critical for the stability and efficiency of various circuit systems. Among the numerous types available, LDO (Low Dropout Linear Regulators) and DC-DC (Switching Regulators) are two common voltage stabilizers. This article will thoroughly explore the selection methods for LDO and DC-DC regulators, covering concepts, operating principles, characteristics, and application scenarios.  A Comprehensive Guide to Selecting LDO (Low Dropout Linear Regulators) and DC-DC (Switching Regulators)  1. LDO (Low Dropout Linear Regulator)  1.1 Concept  LDO stands for Low Dropout Regulator, typically used to regulate high input voltages to lower output voltages. It achieves stable output voltage by adjusting the conduction resistance of its internal transistor.  1.2 Working Principle  When the input voltage exceeds the output voltage, the internal transistor enters an amplified state. It dissipates excess power to regulate the output voltage, maintaining it at the set value.  1.3 Characteristics  Simple design, low noise, relatively low cost, suitable for applications requiring high precision. However, it has low efficiency and significant thermal distortion.  2. DC-DC (Switching Regulator)  2.1 Concept  DC-DC refers to a switching regulator (DC-to-DC Converter) that converts input voltage to the desired output voltage by switching the state of a switching element (e.g., MOSFET).  2.2 Working Principle  DC-DC operates by periodically turning the switching element on and off to control the output voltage magnitude, while a filter removes high-frequency noise from the output waveform.  2.3 Features  High efficiency, capable of delivering substantial output power, suitable for applications requiring large voltage drops or enhanced efficiency, but involves complex design and relatively higher cost.  3. How to Select?  3.1 Output Voltage Range  For lower output voltages, an LDO is more suitable; whereas for large voltage drops or higher output power requirements, a DC-DC converter is more appropriate.  3.2 Efficiency Requirements  When prioritizing power efficiency, especially under large voltage drops, DC-DC converters typically outperform LDOs.  3.3 System Complexity  LDOs may be preferable for simplified design and cost reduction; DC-DC converters are necessary when higher output power and efficiency are required.  3.4 Ripple and Noise  In applications sensitive to output ripple and noise, LDOs are generally more suitable than DC-DC converters because they produce lower ripple and noise.  4. Application Scenarios  4.1 LDO Application Scenarios  Applications requiring high output voltage accuracy, low output current, and strict ripple/noise specifications.  4.2 DC-DC Applications  Applications requiring large voltage drops, high output power, and high efficiency, such as mobile devices, power amplifiers, and communication equipment.  4.3 Comprehensive Considerations  In practical applications, the optimal regulator type must be selected by comprehensively evaluating system power consumption, output load conditions, stability requirements, and cost factors.  As common voltage regulators, LDOs and DC-DC converters play vital roles in electronic product design. Selecting the appropriate regulator type depends on specific application requirements, including output voltage range, efficiency demands, system complexity, and ripple noise. During the selection process, a comprehensive evaluation of all factors is necessary to ensure the circuit system operates stably, reliably, and efficiently.
Key word:
Release time:2025-12-31 17:31 reading:853 Continue reading>>
GigaDevice Achieves ISO/SAE 21434 Certification and ASPICE CL2 Assessment, Strengthening Automotive Cybersecurity Together with TÜV Rheinland
  GigaDevice, a leading semiconductor company specializing in Flash memory, 32-bit microcontrollers (MCUs), sensors, and analog products, has been awarded the ISO/SAE 21434 Road Vehicles Cybersecurity Engineering certification by TÜV Rheinland. In parallel, the MCAL (Microcontroller Abstraction Layer) software of GD32A7 automotive-grade MCUs successfully passed the ASPICE Capability Level 2 (CL2) assessment. These milestones demonstrate GigaDevice’s alignment with internationally recognized practices in automotive cybersecurity and software project management, reinforcing its competitiveness in the global automotive electronics market.  ISO/SAE 21434, jointly issued by ISO and SAE, defines a comprehensive cybersecurity risk-management framework that spans the entire vehicle lifecycle. As vehicles become increasingly connected and intelligent, cybersecurity has emerged as a foundational requirement for protecting user privacy and ensuring a secure, reliable mobility experience. Achieving this certification confirms that GigaDevice has established an end-to-end cybersecurity governance framework across the design, development, and mass-production phases of its automotive product portfolio—helping customers streamline compliance, accelerate program approvals, and enhance market competitiveness.  The ASPICE assessment model, governed by the German Association of the Automotive Industry (VDA), is one of the industry's most important standards for evaluating software development capability. ASPICE CL2 requires companies to adopt structured processes for project planning, monitoring, and traceability. Developed in full compliance with AUTOSAR, the GD32A7 MCAL software supports major compilers and debugging toolchains while meeting both functional-safety and cybersecurity requirements. Passing ASPICE CL2 affirms the maturity of GigaDevice’s software-development lifecycle and underscores its commitment to high-reliability automotive solutions.  Driven by new infrastructure such as 5G, AI, and the IoT, vehicles are evolving into interactive intelligent terminals. Automotive-grade chips play a central role in this transition, enabling continuous advancements in vehicle intelligence. Designed for next-generation automotive platforms, the GD32A7 series leverages the Arm® Cortex®-M7 core and offers multiple configurations, including single-core, multi-core, and lockstep architectures. With a maximum frequency of 320MHz and up to 1300 DMIPS of compute performance, the devices support 2.97V–5.5V operation and deliver stable performance across a –40°C to +125°C temperature range. The series are well suited for applications such as body electronics, intelligent cockpit systems, chassis control, and powertrain subsystems.  The GD32A71x/GD32A72x families comply with ISO 26262 ASIL B, while the GD32A74x series supports ASIL D requirements. All product lines integrate a Hardware Security Module (HSM) with TRNG, AES, HASH, ECC/RSA, and Chinese SM2/SM3/SM4 cryptographic engines, meeting the Evita Full information-security architecture and providing robust data protection for in-vehicle systems.  Wenxiong Li, Vice President of GigaDevice and General Manager of the Automotive BU, stated: “Achieving ISO/SAE 21434 certification and ASPICE CL2 capability assessment marks an important milestone in elevating our automotive-grade MCU development to higher standards of security and process maturity. GigaDevice will continue to expand the GD32 MCU automotive portfolio and deepen our collaboration with TÜV Rheinland to deliver higher-performance, higher-security products and a more complete ecosystem for our customers.”  Bin Zhao, General Manager of Industrial Services and Cybersecurity at TÜV Rheinland Greater China commented: “GigaDevice has demonstrated exceptional execution and technical competence in establishing automotive cybersecurity systems and software development processes. Obtaining ISO/SAE 21434 certification and ASPICE CL2 capability assessment provides strong validation for its entry into global automotive supply chains. We look forward to further collaboration to advance innovation and deployment in automotive electronics safety.”  GigaDevice and TÜV Rheinland also announced the establishment of a strategic partnership focused on functional safety, cybersecurity, personnel training, and certification services. The collaboration aims to integrate both parties' strengths to enhance competitiveness across automotive, industrial, and emerging markets—delivering safer and more reliable products and solutions to customers worldwide.
Key word:
Release time:2025-12-26 16:25 reading:983 Continue reading>>
Murata Launches World’s First Inner Cavity-Structure Ultra-Low-Loss LCP Flexible Substrate, Achieving Dk below 2.0, Contributing to 6G Realization
  Murata Manufacturing Co., Ltd announces the World’s First LCP (liquid crystal polymer) flexible substrate with an Inner Cavity structure, ULTICIRC, and has already begun mass production*. Murata’s proprietary design incorporates an Inner Cavity within the substrate to achieve a dielectric constant (Dk) below 2.0, dramatically reducing transmission loss.Cross-Section Image  With 6G expected to leverage the FR3 (Frequency Range 3) band—roughly 7–24 GHz—substrates with minimal transmission loss are essential to enable high-speed, high-capacity communications at high frequencies. At the same time, demand is growing for thin, space-saving flexible substrates that support free-form mechanical design to meet the ongoing miniaturization of smartphones and communication equipment. Murata has provided LCP flexible substrates with excellent high-frequency characteristics, featuring a proprietary high-performance resin that eliminates spring-back and an adhesive-free, one-shot press multilayer lamination process; building on this expertise for 6G readiness, Murata has developed and launched ULTICIRC. Conventional flexible substrates faced the challenge that making them thinner resulted in increased transmission loss, but this product incorporates an Inner Cavity structure within the substrate, achieving a dielectric constant (Dk) below 2.0, which is significantly lower than Murata's conventional products, enabling both thin profiles and ultra-low transmission loss simultaneously.  Furthermore, thanks to an adhesive-free proprietary manufacturing method and the excellent barrier properties of LCP, the Inner Cavity structure maintains high moisture resistance.  For inquiries regarding this product, please contact us.
Key word:
Release time:2025-12-18 16:00 reading:546 Continue reading>>

Turn to

/ 45

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
model brand To snap up
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code