ROHM Releases a New Compact PFC + Flyback Control Reference Design for Power

Release time:2025-08-25
author:AMEYA360
source:ROHM
reading:607

  ROHM’s new reference design (REF67004) is capable of controlling two commonly used power converter types in consumer and industrial power supply applications by using a single MCU :critical conduction mode PFC (Power Factor Correction) and quasi-resonant flyback. This is part of ROHM’s LogiCoA™ Power Supply Solution, that leverages analog-digital hybrid control technology. It combines an analog-controlled power stage circuit featuring ROHM’s superior silicon MOSFETs and gate driver ICs with a digitally managed power supply circuit built around the low-power LogiCoA™ MCU.

ROHM Releases a New Compact PFC + Flyback Control Reference Design for Power

  Analog-controlled power supplies are widely used in small- to medium-power industrial applications, such as industrial robots and semiconductor manufacturing equipment. However, growing demands for higher reliability and more precise control have made it increasingly difficult for analog-only configurations to meet market expectations. On the other hand, while fully digital power supplies offer fine control and greater flexibility, their adoption in the small to medium power range has been limited due to the high cost and power consumption of digital controllers.

  To overcome these challenges, ROHM has developed the LogiCoA™ Power Supply Solution, a hybrid approach that integrates the advantages of both analog and digital control. Combined with ROHM’s high-performance, the low power LogiCoA™ MCUs enable easy control of various power topologies. As the first step, ROHM has released the REF66009 evaluation reference design, allowing users to explore the LogiCoA™ Power Supply Solution using a non-isolated buck converter circuit. This was followed by the launch of the REF67004, a reference design incorporating both PFC and flyback converters – topologies commonly used in consumer and industrial equipment.

  The newly introduced REF67004 is a reference design that boosts AC input using a Critical Conduction Mode PFC converter, followed by a Quasi-Resonant Flyback converter to deliver a regulated DC 24V output. Features include a calibration function that compensates for variations in the external component characteristics, enabling the LogiCoA™ MCU to perform high-precision voltage configuration and overcurrent protection. This allows for reduced design margins, making it possible to select more compact (low power) power devices and inductors, ultimately helping to minimize PCB area and lower overall system costs.

  The REF67004 also includes a logging function that allows the LogiCoA™ MCU to store operational data, such as input/output voltage, current, temperature, pre-shutdown system status, and cumulative operating time, in its built-in non-volatile memory. This data can be analyzed to easily identify the root cause of power supply failures. On top, various power control parameters and operational history can be easily configured and retrieved from a PC via UART (with a signal conversion device) using sample programs, including the RMOS (Real-time Micro Operating System) power control OS, available on ROHM's website. Practical evaluation is possible through the use of the reference design board LogiCoA003-EVK-001. Going forward, ROHM will continue to provide a variety of power supply reference designs to support and accelerate customer power supply development.

  LogiCoA™ Brand

  LogiCoA™ is a brand that embodies a design philosophy of fusing digital elements to maximize the performance of analog circuits. By combining the advantages of analog circuitry with those of digital control, it is possible to maximize the potential of circuit topologies, contributing to more efficient power utilization. As LogiCoA™ is a design concept that can be applied not only to the power supply field, but also to power solutions as a whole, ROHM is considering its application in future products and solutions.

ROHM Releases a New Compact PFC + Flyback Control Reference Design for Power

  ・LogiCoA™ is a trademark or registered trademark of ROHM Co., Ltd.

  LogiCoA™ Power Supply Solution Page

  The basic architecture and key features of the LogiCoA™ Power Supply Solution are available on ROHM’s website.

  https://www.rohm.com/support/logicoa

  LogiCoA™ Power Supply Solution Reference Design Lineup

  In addition to sample software, a variety of tools necessary for evaluation, such as circuit diagrams, PCB layouts, parts lists, and support documents are available on ROHM’s website, while actual device evaluation is also possible using the reference design board. Going forward, ROHM will continue to expand its lineup of reference designs to support a wide range of power topologies.

  ● Reference Design Part No.

  • PFC + Flyback Converter: REF67004

  • Buck Converter: REF66009

ROHM Releases a New Compact PFC + Flyback Control Reference Design for Power

  LogiCoA™ MCU  Lineup

  Key features include a built-in 3ch analog comparator that can be synchronized with timers, along with a D/A converter that enables digital control of various parameters to support different power supply topologies.

  LogiCoA™ MCU Development Support System

  Built on a ROHM’s proprietary 16bit RISC CPU core, LogiCoA™ MCUs are fully supported by a dedicated integrated development environment and emulator tools.

  For more information on the LogiCoA™ development support system and a product overviews, please visit ROHM’s LogiCoA™ MCU development system support page (link below).

  https://www.rohm.com/lapis-tech/product/micon/logicoa-software

  Online Sales Information

  Reference design boards, reference board and LogiCoA™ MCUs are available for purchase through online distributors such as AMEYA360.

  • Reference Design Board P/N:

  LogiCoA003-EVK-001*, LogiCoA001-EVK-001

  • Reference Board P/N:

  RB-D62Q2035TD20, RB-D62Q2045GD24

  • LogiCoA™ MCU P/N:

  ML62Q2035-NNNTDZWATZ, ML62Q2045-NNNGDZW5BY

  Pricing : $677/unit (samples for LogiCoA003- EVK-001, excluding tax)

  Application Examples

  • Industrial robots • Semiconductor manufacturing equipment • Gaming devices

  The LogiCoA™ Power Supply Solution is also suitable for integration into general industrial equipment and consumer devices with power requirements ranging from approximately 50W to 1kW.

  Terminology

  Critical Conduction Mode PFC (Power Factor Correction) Converter

  A configuration used in AC-DC converters within switching power supplies, Critical Conduction Mode PFC offers a high-power factor (indicating efficient utilization of supplied power) while generating less noise compared to Continuous Conduction Mode PFC. A power factor of ‘1’ signifies that all supplied power is being effectively used without waste.

  Quasi-Resonant Flyback Converter

  A DC-DC converter topology commonly used in isolated power supply designs, these converters leverage a quasi-resonant control technique to minimize switching losses and noise. Ideal for applications up to 100W, it offers advantages in terms of reduced component count and cost. While other forward-type topologies exist, advancements in the components used in these designs have led to smaller, more efficient isolated power supply solutions.

  Analog Control Power Supply

  A power supply configuration built with analog components, commonly used for applications up to 1kW due to its simplicity and low power consumption. However, implementing advanced features such as customizable parameter settings and data logging is challenging with analog control alone, often requiring fully digital solutions that tend to increase both cost and power consumption.

  Digital Control Power Supply

  A power supply is managed using digital technology. High-speed CPUs and DSPs are used to precisely monitor and control key parameters such as voltage and current, improving power supply efficiency and reliability. Digital control also enables advanced functions, such as operation log data acquisition, that are difficult to implement with analog control alone. However, CPUs and DSPs tend to be expensive and consume significant power, posing challenges in terms of cost effectiveness and energy efficiency.

  • CPU (Central Processing Unit): The core processor responsible for executing programs and performing data processing.

  • DSP (Digital Signal Processor): A processor that converts analog signals into digital form and performs operations such as filtering and amplification.

  Topology

  Refers to the circuit configuration. Power topology defines how electrical energy is transformed and managed within a circuit. The specific configuration depends on factors such as input and output voltage levels, power requirements, and whether electrical isolation is necessary.


("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
ROHM launches SiC MOSFETs in TOLL package that achieves both miniaturization and high-power capability
  ROHM has begun mass production of the SCT40xxDLL series of SiC MOSFETs in TOLL (TO-Leadless) packages. Compared to conventional packages (TO-263-7L) with equivalent voltage ratings and on-resistance, these new packages offer approximately 39% improved thermal performance. This enables high-power handling despite their compact size and low profile. It is ideal for industrial equipment such as server power supplies and ESS (Energy Storage Systems) where the power density is increasing, and low-profile components are required to enable miniaturized product design.  In applications like AI servers and compact PV inverters, the trend toward higher power ratings is occurring simultaneously with the contradictory demand for miniaturization, requiring power MOSFETs to achieve higher power density. Particularly in totem pole PFC circuits for slim power supplies, often called “the pizza box type,” stringent requirements demand thicknesses of 4mm or less for discrete semiconductors.  ROHM's new product addresses these needs by reducing component footprint by approximately 26% and achieving a low profile of 2.3mm thickness – roughly half that of conventional packaged products. Furthermore, while most standard TOLL package products are limited by a drain-source rated voltage of 650V, ROHM's new products support up to 750V. This allows for lower gate resistance and increased safety margin for surge voltages, contributing to reduced switching losses.  The lineup consists of six models with on-resistance ranging from 13mΩ to 65mΩ, with mass production started in September 2025 (sample price: $37.0/unit, tax excluded).   Product Lineup  Application Examples  ・Industrial equipment: Power supplies for AI servers and data centers, PV inverters, ESS (energy storage systems)  ・Consumer equipment: General power supplies  EcoSiC™ Brand  EcoSiC™ is a brand of devices that utilize silicon carbide (SiC), which is attracting attention in the power device field for performance that surpasses silicon (Si). ROHM independently develops technologies essential for the evolution of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.• EcoSiC™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  Totem Pole PFC Circuit  A highly efficient power factor correction circuit configuration that reduces diode losses by using MOSFETs as rectifier elements. The adoption of SiC MOSFETs enables high voltage withstand capability, high efficiency, and high-temperature operation for the power supply.
2025-12-04 17:10 reading:219
ROHM launches RPR-0730: High-Speed, High-Precision Optical Sensor Featuring VCSEL Technology
  ROHM has developed the “RPR-0730”, analog compact optical sensor, capable of high-precision detection of fast-moving objects. This sensor can be widely utilized in consumer and industrial equipment applications, including printers and conveyor systems.  As industrial and office equipment becomes increasingly sophisticated and automated, there is a growing demand for improved sensing technology accuracy. In applications such as label printers, material or product transport systems, and copiers, the need for technology that can identify objects more accurately is essential. Moreover, increased speed driven by productivity improvements makes the introduction of high-speed, high-precision optical sensors crucial.  The RPR-0730 is a compact reflective optical sensor (photo reflector). It employs an infrared VCSEL, which offers higher directionality than LEDs, enabling detection of finer objects. Furthermore, by using a phototransistor with analog output as the receiver, the sensor achieves a response time of 10µs. This dual combination enables high-speed, accurate identification of fine lines as narrow as 0.1mm - previously difficult to detect with conventional LED light sources. As an addition to the existing digital output sensor “RPR-0720” series, RPR-0730 expands capability to applications requiring faster sensing, such as print detection in copiers, label printers, or rotational detection in motors and gears.  The package is ultra-compact at 2.0mm × 1.0mm × 0.55mm and employs a visible light filtering resin to suppress interference from ambient light or sunlight. This enables stable detection even in environments with varying light conditions, such as factories or outdoors. The sensor can also be easily integrated into equipment requiring installation in small, confined spaces, like inside conveyors or precision instruments, making it suitable for a wider range of applications.  Mass production of the new product commenced in October 2025 (sample price: $2.2/unit, tax excluded).  Going forward, ROHM will continue to leverage its development expertise in light-emitting and light-receiving elements to create sensing products that meet customer needs, contributing to the miniaturization and enhanced convenience of various devices.  Application Examples  •Print detection, paper feed/jam detection in label printers, copiers, shredders, etc.  •Object detection of packages/specimens, workpiece position detection in conveyance systems, automatic inspection equipment, etc.  •Motor/gear rotational detection in industrial robots, etc.  Terminology  Photo reflector  A type of optical sensor combining an emitting element and a receiving element. It illuminates an object and detects the intensity of the reflected light to measure the presence or distance of an object.  VCSELL  Abbreviation for Vertical Cavity Surface Emitting LASER. A type of laser light source, it is a semiconductor laser that can emit light directly from its surface. Compared to LEDs, it offers higher directionality and is suitable for high-precision sensing. Originally adopted for optical communication applications, its use as a light source for proximity sensors and distance sensors has been expanding in recent years.  Phototransistor  A transistor-type photoelectric conversion element that converts optical signals into electrical signals. It integrates a photodiode and a transistor, controlling the base current with light to output an amplified collector current.
2025-12-04 17:04 reading:206
ROHM launches wide SOA MOSFET for AI servers in compact 5×6mm package
  ROHM has developed the 100V power MOSFET - RS7P200BM - achieving industry-leading SOA in a 5060-size (5.0mm × 6.0mm) package. This product is ideal for hot-swap circuits in AI servers using 48V power supplies as well as for industrial power supplies requiring battery protection.  The rapid evolution and widespread adoption of AI technologies have increased the demand for stable operation and improved power efficiency in servers equipped with generative AI and high-performance GPUs. Particularly in hot-swap circuits, power MOSFETs with wide SOA are essential to handle inrush current and overload conditions, ensuring stable operation. Furthermore, within data centers and AI servers, the transition towards 48V power supplies, which offer superior power conversion efficiency, is progressing against a backdrop of energy conservation. This necessitates the development of high-voltage, high-efficiency power supply circuits capable of meeting these demands.  Therefore, ROHM has expanded its line-up of 100V power MOSFETs ideal for hot-swap circuits in AI servers to meet market demand. The new RS7P200BM adopts a compact DFN5060-8S (5060 size) package, enabling even higher density mounting compared to the AI server power MOSFET ‘RY7P250BM’ in the DFN8080-8S (8.0mm × 8.0mm size) package, which ROHM has released in May 2025.  The new product achieves a low on-resistance (RDS(on)) of 4.0mΩ (conditions: VGS=10V, ID=50A, Ta=25°C) while maintaining wide SOA of 7.5A at a pulse width of 10ms and 25A at 1ms under operating conditions of VDS=48V. This balance of low on-resistance and wide SOA, typically a trade-off relationship, helps suppress heat generation during operation, thereby improving server power supply efficiency, reducing cooling load, and lowering electricity costs.  Mass production of the new product began in September 2025 (sample price: $5.5/unit, excluding tax).  ROHM will continue to expand its product lineup for 48V power supplies, which are increasingly adopted in applications such as AI servers. By providing highly efficient and reliable solutions, we will contribute to reducing power loss and cooling loads in data centers, as well as enhancing the high reliability and energy efficiency of server systems.  Application Examples  •48V system AI servers and data center power hot-swap circuits  •48V system industrial power supplies (forklifts, power tools, robots, fan motors, etc.)  •Battery-powered industrial equipment such as AGVs (Automated Guided Vehicles)  •UPS, emergency power systems (battery backup units)  EcoMOS™ Brand  EcoMOS™ is ROHM's brand of silicon power MOSFETs designed for energy-efficient applications in the power device sector. Widely utilized in applications such as home appliances, industrial equipment, and automotive systems, EcoMOS™ provides a diverse lineup that enables product selection based on key parameters such as noise performance and switching characteristics to meet specific requirements.  ・EcoMOS™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  SOA(Safe Operating Area)  The voltage and current range within which a device can operate safely without damage. Operation beyond this safe operating area may cause thermal runaway or damage; therefore, consideration of the SOA is essential, particularly in applications where inrush current or overcurrent may occur.  Hot-swap circuit  The complete circuitry supports the hot-swap function, which enables the removal or insertion of components while the device's power supply remains active. Comprising MOSFETs, protective elements, and connectors, it suppresses inrush currents occurring during component insertion and provides overcurrent protection, thereby ensuring the safe operation of the system and connected components.  Inrush Current  The high current exceeds the rated current value that flows momentarily when switching on electronic equipment. Controlling this prevents damage to devices and stabilizes the system by reducing the load on components within the power supply circuit.  On-resistance(RDS(on))  The resistance value between the drain and source terminals when the MOSFET is in operation (on). The lower the value, the less power loss occurs during operation.
2025-11-28 17:28 reading:342
ROHM’s Three-Phase Brushless DC Motor Gate Driver Achieving FET Heat Reduction while Suppressing EMI
  ROHM has developed the “BD67871MWV-Z” three-phase brushless DC motor gate driver for medium voltage applications (12 to 48V systems). By incorporating ROHM’s proprietary gate drive technology TriC3™, it greatly reduces FET’s switching loss while maintaining low EMI – traditionally a trade-off in motor driver ICs.  Motors account for approximately 60% of global electricity consumption, making control technology which affects energy efficiency, increasingly critical. In 12V to 48V motor drive applications, a simple configuration where an MCU controls three gate drivers has been the mainstream. However, in recent years, demands for high efficiency and precise control have grown, accelerating the adoption of solutions combining an MCU with an integrated three-phase motor driver. Further, a technical challenge in three-phase motor drivers has been the trade-off between “power consumption reduction” and “noise / EMI (electro-magnetic interference) reduction,”.  BD67871MWV-Z features ROHM's proprietary Active Gate Drive technology “TriC3™”, which rapidly senses voltage information from the external power FETs and adjust gate drive current accordingly in real-time. This greatly reduces FETs’ switching loss (and hence heat generation) FET power consumption during switching while simultaneously suppressing ringing to achieve low EMI.  Compared to ROHM's conventional constant-current drive products, TriC3™ gate drive has been demonstrated in actual motors that FET heat generation by approximately 35% while maintaining equivalent EMI levels. Furthermore, BD67871MWV-Z adopts UQFN28 package and pin layout which are commonly used in motor driver ICs for medium-voltage industrial equipment applications, contributing to reduced engineering effort required in circuit modifications and new designs.  Mass production of the new product commenced in September 2025 (sample price: $5.5/unit, tax excluded).  ROHM also offer general-purpose motor drivers (BD67870MWV-Z, BD67872MWV-Z) with the same package and pin configuration as the new product, designed for constant-voltage drive. From general-purpose types to the value-added types featuring the new TriC3™, we offer a comprehensive product lineup to supports a wide variety of applications and use cases. We are committed to contributing to improved motor efficiency, enhanced application functionality, and reduced power consumption.  Application Examples  •Industrial Equipment: Various motors such as electric drills/drivers and industrial fans  •Consumer Appliances: Various motors used in vacuum cleaners, air purifiers, air conditioners, ventilation fans and E-bikes (electric-assist sports bicycles)  TriC3™  A multi-step constant current drive technology developed by ROHM. By controlling gate current in three steps, it achieves high-speed, high-efficiency operation while minimizing EMI by suppressing ringing.  • TriC3™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  EMI (Electromagnetic Interference)  EMI is used as an indicator of how much noise a product generates during operation, potentially causing malfunctions in surrounding ICs or systems. “Low EMI” means the product generates less noise.  Ringing  High-frequency oscillations or overshoot occurring during switching. This arises from the resonation between inductance and capacitance, including parasitic elements in the circuit. In the context of motor driving, ringing happens when the power MOSFETs are turned on and off.
2025-11-21 16:54 reading:344
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
model brand To snap up
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code