纳芯微高压半桥驱动NSD2622N:为E-mode GaN量身打造高可靠性、高集成度方案

发布时间:2025-05-30 09:52
作者:AMEYA360
来源:纳芯微
阅读量:1059

  纳芯微发布专为增强型GaN设计的高压半桥驱动芯片NSD2622N,该芯片集成正负压稳压电路,支持自举供电,具备高dv/dt抗扰能力和强驱动能力,可以显著简化GaN驱动电路设计,提升系统可靠性并降低系统成本。 

纳芯微高压半桥驱动NSD2622N:为E-mode GaN量身打造高可靠性、高集成度方案

  应用背景

  近年来,氮化镓高电子迁移率晶体管(GaN HEMT)凭借高开关频率、低开关损耗的显著优势,能够大幅提升电源系统的功率密度,明显优化能效表现,降低整体系统成本,在人工智能(AI)数据中心电源、微型逆变器、车载充电机(OBC)等高压大功率领域得到日益广泛的应用。

  然而,GaN器件在实际应用中仍面临诸多挑战。以增强型氮化镓(E-mode GaN)器件为例,由于导通阈值较低,在高压大功率场景,特别是硬开关工作模式下,如果驱动电路设计不当,高频、高速开关过程中极易因串扰而导致误导通现象。与此同时,适配的驱动电路设计也比较复杂,这无疑提高了GaN器件的应用门槛。

  为了加速GaN应用普及,国内外头部GaN厂家近年来推出了一些集成驱动IC的GaN功率芯片,特别是MOSFET-LIKE类型的GaN功率芯片,其封装形式可与Si MOSFET兼容,在一定程度上降低了GaN驱动电路的设计难度。但集成驱动的GaN芯片仍存在很多局限性:一方面难以满足一些客户对于差异化产品设计的需求;另一方面,在多管并联、双向开关等应用场景中并不适用,所以在诸多应用场景中仍需要分立GaN器件及相应的驱动电路。对此,纳芯微针对E-mode GaN开发专用驱动芯片NSD2622N,致力于为高压大功率场景下的GaN应用,提供高性能、高可靠性且具备成本竞争力的驱动解决方案。

  产品特性

  NSD2622N是一款专为E-mode GaN设计的高压半桥驱动芯片,该芯片内部集成了电压调节电路,可以生成5V~6.5V可配置的稳定正压,从而实现对GaN器件的可靠驱动;内部还集成了电荷泵电路,可以生成-2.5V的固定负压用于GaN可靠关断。该芯片由于将正负电源稳压电路集成到内部,因此可以支持高边输出采用自举供电方式。

  NSD2622N采用纳芯微成熟可靠的电容隔离技术,高边驱动可以支持-700V到+700V耐压,最低可承受200V/ns的SW电压变化速率,同时高低边输出具有低传输延时和较小的传输延时匹配特性,完全满足GaN高频、高速开关的需求。此外,NSD2622N高低边输出均能提供2A/-4A峰值驱动电流,足以应对各类GaN应用对驱动速度的要求,并且可用于GaN并联使用场景。NSD2622N内部还集成一颗5V固定输出的LDO,可以为数字隔离器等电路供电,以用于需要隔离的应用场景。

  NSD2622N详细参数:

  SW耐压范围:-700V~700V

  SW dv/dt抑制能力大于200V/ns

  支持5V~15V宽范围供电

  5V~6.5V可调输出正压

  -2.5V内置输出负压

  2A/4A峰值驱动电流

  典型值10ns最小输入脉宽

  典型值38ns输入输出传输延时

  典型值5ns脉宽畸变

  典型值6.5ns上升时间(1nF 负载)

  典型值6.5ns下降时间(1nF 负载)

  典型值20ns内置死区

  高边输出支持自举供电

  内置LDO固定5V输出用于数字隔离器供电

  具备欠压保护、过温保护

  工作环境温度范围:-40℃~125℃

纳芯微高压半桥驱动NSD2622N:为E-mode GaN量身打造高可靠性、高集成度方案

NSD2622N功能框图

  告别误导通风险,提供更稳定的驱动电压

  相较于普通的Si MOSFET驱动方案,E-mode GaN驱动电路设计的最大痛点是需要提供适当幅值且稳定可靠的正负压偏置。这是因为E-mode GaN驱动导通电压一般在5V~6V,而导通阈值相对较低仅1V左右,在高温下甚至更低,往往需要负压关断以避免误导通。为了给E-mode GaN提供合适的正负压偏置,一般有阻容分压和直驱两种驱动方案:

  1.阻容分压驱动方案

  这种驱动方案可以采用普通的Si MOSFET驱动芯片,如图所示,当驱动开通时,图中Cc与Ra并联后和Rb串联,将驱动供电电压(如10V)进行分压后,为GaN栅极提供6V驱动导通电压,Dz1起到钳位正压的作用;当驱动关断时,Cc电容放电为GaN栅极提供关断负压,Dz2起到钳位负压的作用。

纳芯微高压半桥驱动NSD2622N:为E-mode GaN量身打造高可靠性、高集成度方案

阻容分压驱动方案

  以上阻容分压电路尽管对驱动芯片要求不高,但由于驱动回路元器件数量较多,容易引入额外寄生电感,会影响GaN在高频下的开关性能。此外,由于阻容分压电路的关断负压来自于电容Cc放电,关断负压并不可靠。

  如以下半桥demo板实测波形所示,在启机阶段(图中T1)由于电容Cc还没有充电,负压无法建立,所以此时是零压关断;在驱动芯片发波后的负压关断期间(图中T2),负压幅值随电容放电波动;在长时间关断时(图中T3),电容负压无法维持,逐渐放电到零伏。因此,阻容分压电路往往用于对可靠性要求相对较低的中小功率电源应用,对于大功率电源系统并不适用。

纳芯微高压半桥驱动NSD2622N:为E-mode GaN量身打造高可靠性、高集成度方案

E-mdoe GaN采用阻容分压驱动电路波形

(CH2为驱动供电,CH3为GaN栅源电压)

  2.直驱式驱动方案

  直驱式驱动方案首先需要选取合适欠压点的驱动芯片,如NSI6602VD,专为驱动E-mode GaN设计了4V UVLO阈值,再配合外部正负电源稳压电路,就可以直接驱动E-mode GaN。

  这种直驱式驱动电路在辅助电源正常工作时,各种工况下都可以为GaN提供可靠的关断负压,因此被广泛使用在各类高压大功率GaN应用场景。

  纳芯微开发的新一代GaN驱动NSD2622N则直接将正负稳压电源集成在芯片内部,如以下半桥demo板实测波形所示,NSD2622N关断负压的幅值、维持时间不受工况影响,在启机阶段(图中T1)驱动发波前负压即建立起来;在GaN关断期间(图中T2),负压幅值稳定;在驱动芯片长时间不发波时(图中T3),负压仍然稳定可靠。

纳芯微高压半桥驱动NSD2622N:为E-mode GaN量身打造高可靠性、高集成度方案

E-mode GaN采用NSD2622N驱动电路波形

(CH2为低边GaN Vds,CH3为低边GaN Vgs)

  简化电路设计,降低系统成本

  NSD2622N不仅可以通过直驱方式稳定、可靠驱动GaN,最为重要的是,NSD2622N通过内部集成正负稳压电源,显著减少了外围电路元器件数量,并且采用自举供电方式,极大简化了驱动芯片的供电电路设计并降低系统成本。

  以3kW PSU为例,假设两相交错TTP PFC和全桥LLC均采用GaN器件,对两种直驱电路方案的复杂度进行对比:

  如果采用NSI6602VD驱动方案,需要配合相应的隔离电源电路与正负电源稳压电路,意味着每一路半桥的高边驱动都需要一路独立的隔离供电,所以隔离辅助电源的设计较为复杂。鉴于GaN驱动对供电质量要求较高,且PFC和LLC的主功率回路通常分别放置在独立板卡上,因此,往往需要采用两级辅助电源架构,第一级使用宽输入电压范围的器件如flyback生成稳压轨,第二级可以采用开环全桥拓扑提供隔离电源,并进一步稳压生成NSI6602VD所需的正负供电电源,以下为典型供电架构:

纳芯微高压半桥驱动NSD2622N:为E-mode GaN量身打造高可靠性、高集成度方案

NSI6602VD驱动方案典型供电架构

  如果采用NSD2622N驱动方案,则可以直接通过自举供电的方式来简化辅助电源设计,以下为典型供电架构:

纳芯微高压半桥驱动NSD2622N:为E-mode GaN量身打造高可靠性、高集成度方案

NSD2622N驱动方案典型供电架构

  将以上两种GaN直驱方案的驱动及供电电路BOM进行对比并汇总在下表,可以看到NSD2622N由于可以采用自举供电,和NSI6602VD的隔离供电方案相比极大减少了整体元器件数量,并降低系统成本;即使采用隔离供电方式,NSD2622N由于内部集成正负稳压电源,相比NSI6602VD外围电路更简化,因此整体元器件数量也更少,系统成本更低。

纳芯微高压半桥驱动NSD2622N:为E-mode GaN量身打造高可靠性、高集成度方案

GaN直驱方案的驱动及供电电路BOM对比

  适配多种类型GaN,驱动电压灵活调节

  纳芯微开发的E-mode GaN驱动芯片NSD2622N,不仅性能强大,还能够适配不同品牌、不同类型(例如电压型和电流型)以及不同耐压等级的GaN器件。举例来说,NSD2622N的输出电压通过反馈电阻可以设定5V~6.5V的驱动电压。这样一来,在搭配不同品牌的GaN时,仅仅通过调节反馈电阻就可以根据GaN特性设定最合适的驱动电压,使不同品牌的GaN都能工作在最优效率点。

  除此之外,NSD2622N具备最低200V/ns的SW节点dv/dt抑制能力,提升了GaN开关速度上限;采用更为紧凑的QFN封装以及提供独立的开通、关断输出引脚,从而进一步减小驱动回路并降低寄生电感;提供过温保护功能,使GaN应用更安全。

  纳芯微还可提供单通道GaN驱动芯片NSD2012N,采用3mm*3mm QFN封装,并增加了负压调节功能,从而满足更多个性化应用需求。


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
纳芯微携手联合动力打造新一代汽车电驱平台芯片方案
  近日,纳芯微宣布与领先的智能电动汽车部件及解决方案提供商——联合动力(Inovance Automotive)深度合作的两颗高集成度芯片——隔离采样及逻辑ASC集成芯片已在联合动力新一代电驱平台正式量产,定制的解决方案以更高的芯片集成度和更优化的性能,支持新能源汽车电驱系统的集成化演进并助力满足更高等级的功能安全设计。  传统分立式电驱系统部件分散、线束冗余,普遍存在体积大、损耗高、响应慢及可靠性受限等问题,已难以适配新能源汽车电驱系统的持续升级需求。基于市场对长续航与强动力的核心诉求,电驱系统正加速向多合一、高集成方向演进。在此趋势下,芯片不仅需要实现更高程度的功能集成,更需在有限空间内兼顾精度、可靠性和功能安全冗余,同时为系统设计保留足够的灵活度。  基于对电机控制器产品系统架构和功能安全技术十余年的深刻理解,联合动力前瞻性地定义了隔离采样及逻辑ASC集成芯片功能与性能需求。在此次定制合作中,纳芯微创新性地将高压 LDO、隔离采样放大器、隔离比较器集成在单颗隔离采样芯片中,大大减少了外围器件数量,支持电驱系统实现高精度隔离电压采样、快速过欠压保护及小型化设计。此外,该方案中由纳芯微定制的逻辑 ASC 芯片集成有多个逻辑器件,并支持频率检测功能,可满足接口相关逻辑的集中处理,从而简化了接口设计,在提高系统集成度,实现小型化的同时,降低了BOM成本,助力实现电驱/主驱系统功能安全相关架构的优化。  从“分立”到“集成”,将成熟的分立电路“芯片化”,能够带来极简架构的价值跃迁:  质量跃升:架构的简化和元器件数量的大幅减少,直接降低了硬件的潜在失效率,使产品质量水平迈上新台阶。  尺寸优化:高度集成化显著降低了PCB占用面积,为电控产品的小型化和功率密度提升创造了更大空间。  加速开发:标准化的芯片方案取代了复杂的分立电路设计和调试,极大地提升了开发效率,缩短了产品上市周期。  联合动力研发中心总监郑超表示:“电驱正迈入高集成时代,每一颗芯片的技术升级,都能为我们带来体系化创新价值。本次与纳芯微的合作,深度融合了双方在电驱系统与汽车芯片领域的优势,更标志着联合动力的能力实现了关键进阶:我们不仅能够开发性能领先的电控产品,更具备了在源头参与并共同定义产品架构与核心芯片的技术实力。我们期待与纳芯微携手,共同定义下一代电驱技术平台,为车厂提供更具竞争力的系统解决方案。”  纳芯微产品线总监叶健表示:“纳芯微与联合动力具备扎实的合作基础。本次合作的深化,既是客户对纳芯微产品与技术实力的认可,也是我们围绕应用创新战略的生动实践。纳芯微将充分依托在隔离和接口芯片领域的技术专长和长期耕耘,提供高精度、高性能、高可靠的芯片方案,助力联合动力打造全新电驱平台。”  纳芯微“隔离+”体系已形成覆盖数字隔离器、隔离采样、隔离驱动、隔离电源及隔离接口的完整产品布局,截至2025年10月,“隔离+”芯片累计出货量达 20 亿颗。此外,纳芯微还可提供覆盖 CAN,LIN,SerDes,逻辑IC,电平转换等完整的汽车接口芯片,为客户提供一站式的汽车级隔离和接口解决方案。纳芯微在新能源汽车三电系统领域,已与近数百家零部件供应商建立合作关系,为主驱逆变器、车载充电机(OBC)、电池管理系统(BMS)等应用提供包括传感器、信号链、电源管理、MCU在内的芯片解决方案。
2026-01-16 15:31 阅读量:297
纳芯微推出MT932x线性位置传感器,700μA超低功耗与5kHz高带宽
  今日,纳芯微宣布推出低压线性位置传感器MT932x系列。作为公司在线性位置传感器低压平台的重要补充,该系列在实现700μA超低功耗的同时,提供最高5kHz的采样带宽,在保持高精度位置检测的前提下,为智能交互与运动控制类设备提供兼顾能效与性能的解决方案。  低功耗与高带宽并存,提升系统能效  在正常工作状态下,MT932x系列工作电流低至700μA,显著低于行业主流方案,尤其适用于无线游戏手柄、VR 手柄等电池供电的消费类终端设备,可有效延长待机与使用时间,降低充电频次,并提升整体便携性与续航表现。在超低功耗设计的基础上,MT932x系列仍可提供5kHz采样带宽,能够对微小位移变化进行实时、连续捕捉,确保动态控制过程中的响应速度与稳定性。这一特性使其在云台控制、摇杆输入、实时运动跟踪等应用中,可实现更加自然、流畅且一致的交互体验。  高精度与一致性设计,保障长期稳定运行  MT932x系列具备±1.5% 的线性度,以及 ±20mV 的失调电压性能,有助于提升位置反馈计算精度,增强系统整体控制稳定性。同时,其良好的一致性表现可降低终端产品的校准复杂度,确保输出结果可预测、低漂移、低误差,适用于对位置精度和长期稳定性要求较高的应用场景,如 3D 打印设备、液位检测系统等。  小型封装与多灵敏度配置,增强设计灵活性  MT932x系列提供DFN1616、SOT23等小型封装选项,便于在空间受限的终端产品中实现高性能集成,符合消费电子产品小型化的发展趋势。同时,系列产品支持多种灵敏度配置,客户可根据不同机械结构、磁场间距及工作条件灵活选型,降低设计约束,加快产品开发进程。
2025-12-26 14:30 阅读量:402
纳芯微推出NSI1611系列隔离电压采样芯片
  纳芯微今日宣布正式推出全新一代隔离电压采样芯片NSI1611系列。作为纳芯微经典产品NSI1311系列的全面升级,NSI1611系列基于其领先的电容隔离技术,在性能与适配性上实现双重突破。  其核心创新在于支持0~4V宽压输入的同时,能够保持1Gohm的高阻输入,可显著提升电压采样的精度与抗干扰能力;同时部分料号亦兼容传统0~2V输入,为客户提供更灵活的器件选择。  NSI1611系列包含差分输出的NSI1611D和单端输出的NSI1611S。其中,差分输出均为固定增益,单端输出则提供固定增益和可调比例增益两类选项,进一步满足不同系统架构与设计需求。  在新能源汽车与工业自动化领域,对高压系统采样提出了“高精度、高灵活度”的严苛要求,隔离电压采样芯片的性能迭代与场景适配能力已成为行业竞争关键。全新NSI1611系列通过创新的宽压+高阻输入与灵活输出配置两大特点,能够同时支持新项目设计与存量平台升级,为新能源汽车主驱逆变器、车载充电机(OBC)等汽车应用,以及伺服、变频器、电机驱动等工业应用带来更优的器件选择。  创新宽压+高阻输入  精度抗扰双重提升  以新能源汽车主驱系统为例,随着其母线电压进一步提升至800V,以及SiC/GaN器件的应用,控制系统对电压采样的精度及抗干扰能力有了更高的要求。  市面上多数隔离电压采样芯片的输入范围为0~2V,而NSI1611创新性地在保持1Gohm高阻输入的同时,将其拓展至0~4V,突破前代及行业同类产品的输入范围限制,带来精度和抗干扰的双重升级,在适配更高母线电压的同时,降低了设计复杂度和开发周期。  抗干扰能力增强:NSI1611采用宽压输入时,参考地的噪声对输入信号的干扰比例直接减半。结合NSI1611内部的电路优化,其芯片EOS能力大幅提升,且EMI可通过CISPR 25 Class 5等级测试,CMTI高达150kV/μs。在新能源汽车主驱、工业变频器等高开关频率的复杂电磁环境中,宽压输入能够保证采样信号更纯净,大大提升了系统运行的稳定性,降低终端应用的失效风险。  采样精度再升级:0~4V的宽压输入范围可扩大分压比,结合优化的信号调理设计,在保持高阻输入的同时显著降低输入误差,让测量数据更接近真实电压值,为系统的精准控制提供可靠数据;在采样误差测试中,相比前代产品NSI1311系列,NSI1611系列凭借更宽的输入范围在系统的低压区域取得了较大的精度优势,在满量程800V母线电压系统中,当输入电压100V时,NSI1611的采样误差相比NSI1311降低超30%,误差低于1.2%。  NSI1611和NSI1311的采样误差随输入电压变化曲线  单端/差分输出灵活选择  简化设计更高效  凭借深刻的系统级理解,NSI1611系列基于前代产品的应用痛点,全新加入单端输出版本,并且提供“固定增益/比例增益”双版本选择,适配多元化的系统配置需求,可帮助客户简化选型和设计:  简化设计、降低BOM成本:NSI1611的单端输出信号可直接接入MCU的ADC接口,彻底省去了传统差分输出方案所必需的后级运放及调理电路,不仅直接降低了BOM成本,还简化了PCB布局与器件选型复杂度,为紧凑型和高功率密度应用提供了更优的解决方案。  增益自适应适配多元需求:比例增益版本(NSI1611S33/NSI1611S50)可通过REFIN引脚进行配置,使输出增益匹配后端ADC的满量程输入范围,最大化利用ADC的动态范围,提升了整体信号链的有效位数与采样精度,进一步满足多元化的高精度测量需求。  同时,NSI1611系列亦保留差分输出版本NSI1611D02,与纳芯微NSI1311完全引脚兼容,客户无需修改PCB即可实现无缝升级或跨品牌替换,显著降低迁移成本。  多项参数优化  性能全面升级  随着系统功率密度的提升,对器件耐压能力、采样精度、EMI性能等提出了更高的要求。NSI1611针对相关关键参数进行了优化,在全面升级器件可靠性和性能的同时,亦优化了器件成本,为客户提供“性能-成本-可靠性”兼得的选择。  车规级可靠性保障:NSI1611系列的车规版本满足AEC-Q100 Grade 1要求,工作温度覆盖-40℃~125℃,隔离耐压高达5700Vrms,最大浪涌隔离耐压Viosm达10kV,适配汽车高温高压严苛环境,可在极端场景下确保隔离的可靠性。  精度参数全面进阶:NSI1611系列的输入偏置电压Vos(Offset Voltage)指标优化至±0.8mV,相较于前代NSI1311同规格产品的±1.5mV,精度表现实现巨大提升;此外,增益温漂(Gain Drift)从前代的45ppm/℃优化至40ppm/℃,全温区精度稳定性进一步提升;非线性误差、温漂(Offset Drift)维持在行业优异水平,有效加快了系统开发的标定流程;同时,NSI1611系列的采样带宽达到330kHz,适配SiC和GaN等新一代高频开关器件控制,满足高动态响应需求。  功耗优化更节能:相比前代产品,NSI1611系列功耗表现进一步优化,助力终端产品降低能耗。对比前代,NSI1611的Idd1由11.4mA降低至7.2mA,Idd2由6.3mA降低至4.7mA(均为典型值Typ.),NSI1611系列的整体综合功耗下降约33%,可助力客户打造更节能的汽车电子系统,提高新能源汽车的续航里程。  EMI表现更优异:NSI1611基于时钟信号隔离通道复用技术,大幅优化了EMI表现。在200MHz到1000MHz频段的EMI测试中,NSI1611的辐射发射(RE)指标在水平方向和垂直方向均保持10dB以上裕度(3dB~6dB裕度即可满足工程需求),可轻松通过CISPR 25 Class 5认证。面对汽车主驱、OBC等复杂电磁环境,可以减小对系统其他部件的电磁干扰,有效减少系统电磁兼容整改工作量,加快产品上市进度。  封装和选型  NSI1611系列选型表  丰富的“隔离+”产品  满足多元化应用需求  凭借在隔离技术方面的积累和领先优势,纳芯微提供涵盖数字隔离器、隔离采样、隔离接口、隔离电源、隔离驱动等一系列 “隔离+”产品。纳芯微正以全生态“隔离+”产品矩阵,为高压系统筑造安全可靠的防线:  “+”代表增强安全:纳芯微“隔离+”产品提供超越基本隔离标准的安全等级,为客户系统构筑更坚固的高低压安全边界。  “+”代表全产品生态:纳芯微以成熟的电容隔离技术IP为核心,拓展出包括数字隔离器、隔离采样、隔离接口、隔离电源、隔离驱动等完整产品组合,为客户提供隔离器件的一站式解决方案。  “+”代表深度赋能应用:纳芯微“隔离+”产品可满足电动汽车高压平台、大功率光储充系统,以及高集成、高效率AI服务器电源等场景的核心需求,实现系统级安全、可靠与高效。
2025-12-17 16:06 阅读量:483
纳芯微“隔离+”再获权威认可|两款车规芯片斩获中国汽车芯片创新成果奖
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
型号 品牌 抢购
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码