培育耐盐害水稻——土壤传感器为智能农业做出贡献

Release time:2023-09-20
author:AMEYA360
source:村田
reading:2601

  开发耐盐害水稻以应对气候变化

  全球变暖导致的气候变化引起气温上升和海平面上升,世界各地不断出现干旱和大雨的灾害。这对全世界的农作物生长产生了重大影响。目前,世界各地都需要能够应对气候变化的农作物品种,以应对这些事态。在这样的背景下,东北大学和农研机构开发出了耐盐害的水稻。

  盐害是指因土壤和水中含有的高浓度盐分而引起的农作物发育不良。为了分析这种水稻的耐盐害性要素,东北大学和村田制作所于2022年6月到2023年3月,在联合开展一项使用土壤传感器进行的“分析地表根系水稻耐盐害性要素的实证实验”。传感技术是如何对农作物的品种改良做出贡献的呢?关于具备耐盐害性的水稻的概况以及传感技术的活用,我们听取了从事研究工作的东北大学技术专业员半泽荣子女士的见解。

  通过遗传育种开发耐盐害水稻

  半泽女士的专业学术“遗传育种学”是研究什么的呢?

  植物的遗传因素控制其功能性状。“遗传育种学”的研究领域就是解析植物的遗传因素,并导入与目标性状相关的遗传因素等,通过这些技术,去开发前所未有的品种。“功能性状”是指例如决定植物的姿态形状,或可适应各种环境的性质等。说到品种改良,最近备受关注的是基因编辑等,而我们是将品系间的杂交和遗传解析进行结合,通过这种遗传学式的方法,开发出新的品系。

  2020年公布说,通过遗传育种技术开发出了耐盐害的水稻,这种水稻与以往的水稻有什么不同呢?

  2020年公布的耐盐害水稻是根据东北大学和农研机构的联合研究,在世界上首次发现的一种水稻基因。这种基因能使水稻在地表或地表附近横向伸展根部,形成地表根(照片1)。实际上,将这种基因导入水稻栽培品种中,并使用该品系在我们管理的盐害实验用的农场进行评估后的数据结果显示,一般的水稻会因盐害造成产量(农作物的收获量)减少,而根系横向伸展的水稻的减产量低于一般水稻。

  为什么水稻的根横向伸展就不容易受到盐害的影响呢?

  虽然笼统说是盐害,但农田和水田所受到的影响略有不同。农田中的盐害是由于土壤中高浓度的盐分本身对植物细胞造成伤害。而另一方面,水田中的盐害是由于来自盐的过量钠离子增加了土壤的紧密性,土和土之间难以积存氧气,使土壤变成缺氧状态,从而导致农作物发生根部腐烂等发育不良的问题。

  用于有关水稻地表根形成的遗传解析及品种培育的双亲系水稻(左:Sasanishiki,右:Gemdjah Beton)

  除盐也是一种保护农作物免受盐害的方法,那么采用品种改良水稻的益处是什么呢?

  我认为在日本发生大规模的盐害就像东日本大地震后那样是比较少见的情况,所以从水田表层注入淡水将盐分冲入地下的这种除盐作业或许见效会比较快。但是,据报道,目前由于全球变暖引起的气候变化,世界各地的许多国家和地区都发生了盐害。

  干燥地带的盐害是由于不下雨,地下水的盐分上升到地表而造成的。从世界范围来看,除了干燥地带以外,还有因海平面上升,海水流入农业用地造成的沿岸地区的盐害等,所以有必要做好应对大规模且长期性课题的准备。在预想这些情况时,仅凭除盐作业是不够的,所以我认为,从一开始就种植耐盐害品种是一种有效的方法。

  实时掌握土壤盐分浓度变化

  东北大学和村田制作所于2022年6月至2023年3月在联合开展“分析地表根系水稻的耐盐害性要素的实证实验”。

  这个实证实验调查的是什么呢?

  2020年开发出耐盐害的水稻后,我开始想了解水稻根部的伸展方向和深度与土壤盐分浓度之间有着什么样的关联性。所以,这次实证实验就是调查盐分浓度在土壤的地表、中间层以及最深层是如何产生变化的(照片2)。

  土壤的盐分浓度是如何随着时间发生变化的?盐分是如何对根系产生影响的?对于这些问题,我希望能获取新的知识见解。

  在盐害实验农场开展盐分浓度监测实证实验的情形

  也就是说,要想了解盐分浓度在不同深度的土壤中所产生的不同变化,也需要土壤传感器?

  最初我是因为知道了土壤传感器的存在,所以产生了一个想法,这个想法就是包括自然环境的影响在内,或许可以实时监测盐分浓度在不同深度的土壤中所产生的变化和差异。

  2019年左右,我咨询了东北大学(当时)的菅野均志老师,想知道能否更有效地测定出盐害实验农场的水田表面灌水的盐分浓度。这个水田是我所属的东北大学研究生院生命科学研究科附属的淹灌生态系野外实验设施(宫城县大崎市鹿岛台)长年管理的水田。通过这次咨询的契机,我知道了土壤传感器的存在。当时菅野均志老师将传感器的装置借给了我,于是我就使用这个装置对盐分浓度进行了持续监测。

  盐害实验农场的盐分浓度的管理是由农场的工作人员每天采集1次水田表面的水,用盐分浓度计进行测量,并通过加入一般用水等来调整浓度。一天中盐浓度有时会因降雨和气温上升等天气的变化出现很大的波动,但我们当时并无法实时了解其变化的倾向。

  本次实证实验所获得的成果,对于未来也一定具有重大意义。

  我们人类既要进一步加深对自然环境的理解,将灾害的发生控制在最低限度,同时也要一边尽量获取自然的恩惠一边去创造共生的时代。要做到这一点,我认为活用传感器之类的最新设备去收集数据并解析技术将变得至关重要。

  活用传感器

培育耐盐害水稻——土壤传感器为智能农业做出贡献

  解决农业领域问题的尖端技术

  今后在农业领域,您认为以土壤传感器为首的环境传感器会发挥什么样的作用?

  农业的现场与自然环境是共存的,所以要正确评估农业所处的环境并将其可视化,我认为今后继续积极引进此类技术将变得越来越重要。另外,利用各种传感器,不仅对农业的节约人力化和高效化有所帮助,还能增加年轻一代的农业从事者,一定会带来好的影响。所以要进一步确保可持续性的稳定产量,我认为传感器也具有可充分做出贡献的潜力。

  但是,我感觉目前人类还远远没有充分活用设备和数据获取到好的结果。所以我希望能有人开发出可获取有关产量和质量的详细数据的技术,或者增加一些能更加容易操作的技术。另外,我还认为引进设备和维护管理等确保成本和人才也是重大课题。

  在活用传感器方面存在课题吗?

  要活用传感器,我认为前提是要有长年积累的农业经验、知识、技术的基础。在开发这类新技术的同时,如果不能与以往的方法建立联系,也就是不能顺利进行数据融合的话,就有可能造成技术独行。这方面必须考虑到各种问题。

  我觉得与其他产业领域相比,农业的IT化一直发展迟缓的原因是存在一种“从事农业的人不擅长IT”的普遍印象。在这样的情况下,今后要想在农业领域积极推进IT活用,需要采取什么样的措施呢?

  我觉得最好能让农业工作者获得更多轻松接触IT技术的机会。例如,在一定期限内可以免费试用装置的措施等也很有效。我通过老师们的帮助,很幸运地遇到了土壤传感器,在监测时活用传感器,切实感受到了IT技术的益处,所以才有了现在的实证实验。

  今后,如何理解通过传感器等获得的数据?如何使用这些数据去改善农事的流程?要加强对这些数据的活用,我认为首先要在农业工作者的身边增加他们接触IT技术的机会,让他们感受到利用IT技术的益处,这一点非常重要。

  由于工作的场所不同,农业和其他领域的跨领域交流给人一种很困难的印象。作为沟通交流的场所,您认为可以为他们提供什么样的环境呢?

  我认为可以活用各研究领域定期举办的研究集会和学会等,增加不同领域的研究者可以交流的机会。另外环境整备和信息发布等也很关键,通过这些可以将农业现场的需求和IT技术结合起来。我期待每一项技术都能跨越领域界限,发展成新的产业。

  半泽荣子女士是东北大学研究生院生命科学研究科技术专业员。创价大学工学部生物工学系(当时)毕业,信州大学研究生院农学研究科硕士课程结业。2002年起任东北大学研究生院生命科学研究科技术人员,现作为技术专业员从事研究。她在开展有关研究教育活动的技术支持的同时,十多年以来一直在进行与水稻根系形态相关的遗传育种的研究。

("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
村田:笔记本电脑MLCC啸叫问题分析与优化对策
  传统电子设备中使用了很多钽电容器和铝电解电容器,但近年来由于产品小型化和可靠性等问题,已逐步被陶瓷电容器替换。随着电子设备的多功能化和静音化的发展,在笔记本电脑、智能手机(手机)、汽车导航系统、无线充电等的电源电路中,以前不起眼的陶瓷电容器产生的“啸叫(声音)”已成为设计方面的一个大问题。  在笔记本电脑中,由电源线上使用的陶瓷电容器产生的“啸叫(声音)”有时会成为问题。如果将工作模式改为睡眠状态/待机画面等,笔记本电脑的内部动作将发生变化,因此“啸叫(声音)”的音量会根据工作模式而改变,听到的感受也会有所不同。  本文对笔记本电脑电源线中的电容器产生的“啸叫(声音)”的对策、评估方法以及产生机制进行介绍。  笔记本电脑“啸叫”  笔记本电脑中易于发生“啸叫(声音)”的工作模式,以下三种比较常见:  1.睡眠模式(降压转换器:PFM模式)  2.液晶背光(升压转换器:PWM调光)  3.摄像头模式/重负载模式(间歇工作)  笔记本电脑中易于发出“啸叫(声音)”的电容器在哪个位置?笔记本电脑中的电源线(DC-DC converter的一次侧)多使用电容器。若在该电源线上使用陶瓷电容器时,有时会产生啸叫。笔记本电脑电源线的简图(示意图)笔记本电脑的电路图(简图)  一般来说,容易产生“啸叫(声音)”的电容器具有以下几个特点:  1.电容器尺寸大。  2.静电容量大。  3.线电压和电压变动(电流变动)大。  4.同一条线上安装了多个符合上述内容的  陶瓷电容器。  总的来说,笔记本电脑电源线上的电容器容易产生“啸叫”的原因如下:  1.电源线电压为10~20V,比较高。  2.为了给CPU、摄像头、RF模块等各电路供电,电压容易发生变动。  3.如果元件尺寸/静电容量较大,由于施加电压而导致的介电质膨胀/收缩也会变大。  啸叫产生机制  为什么陶瓷电容器会产生“啸叫(声音)”?下面对啸叫产生机制和本公司进行的和啸叫评估方法进行说明。    啸叫的产生机制  多层陶瓷电容器上使用的铁电体需要有压电性。存在电场时,发生失真,由于芯片膨胀、收缩,产生“啸叫(声音)”。  采用啸叫对策的效果  与笔记本电脑中易于发生啸叫的工作模式/具有高声压级的工作模式——睡眠状态/待机画面相关的啸叫对策效果示例。  电源线上的电容器对应效果  如果在电源线中使用陶瓷电容器时产生啸叫,可以通过对产生啸叫的电容器采取啸叫对策来降低声压级——效果对比见上图。当然,改良啸叫问题的第一步,是进行电路啸叫问题的评估。  啸叫的评估  啸叫的评估方法主要是以下两种:  1.声压级测量  2.电压变动测量  既然“声音”就是问题所在,那么“声压级”就是主要的测量对象。电波暗箱中使测量物体处在工作状态,通过话筒,用声级计测量声压级。此外,为了评估和对策,用FFT分析仪确认声压级的频率特性。  声压级测量  为了调查产生啸叫的电容器,我们还可对“电压变动”进行测量。在被测物处于工作状态时,确认查电容器上是否施加了可听频率范围(20Hz~20kHz)内的纹波电压。  电压变动测量  声压级和电压变动有什么关系呢?  如果施加在电容器上的电压变动的频谱在与声压级的频率特性相同的频率时变高(下图红色虚线框内),则可以确定该电容器是产生啸叫的原因。  关于声压级和电压变动关系  案例:笔记本电脑电源线  将笔记本电脑的工作模式改变为睡眠模式/待机画面后,笔记本电脑内部的动作会发生变化,因此声压级/电压变动也会发生变化。操作模式不同,声压级也不同,所以,有必要对正在发生啸叫的工作模式和容易发生啸叫的工作模式分别进行评估。  操作模式不同,声压级也不同  下图为电源线中作为啸叫对策对象的电容器的简化电路图。粉色框表示电源线中容易产生啸叫的电容,是采取啸叫对策的对象。  电源线中作为啸叫对策对象的电容器(简化电路图)  在通过DC-DC转换器分支到各电路之前,它们在同一条电源线上,电压变动几乎相同。因此,有必要针对该电源线上的全部电容器采取预防啸叫的对策。  电源线的啸叫对策不是替换部分电容器,而是将电容器全部替换为防啸叫产品,从而可以将声压级进一步降低。  按照电路[A-C]的顺序,将普通电容器替换为防啸叫产品。  通过增加替换为防啸叫产品的电容器数量,逐渐降低声压级。  替换评估:  本次评估使用的电容器产品为村田制作所的以下两款MLCC:  对策前:  普通MLCC GRM31MR61E106KA01  对策后:  防啸叫产品 KRM31FR61E106KH01  睡眠和待机状态下的效果如下  睡眠状态的替换评估数据  待机画面的替换评估数据  防啸叫产品介绍  了解了啸叫的原因及相应对策,才能正确选择防啸叫产品。在村田公司,如果因陶瓷电容器的影响而产生了啸叫问题,会根据影响啸叫的原因提出使用防啸叫产品和元件配置等方面的建议,以应对改善啸叫问题。  啸叫的原因及对策  对策1:带金属端子MLCC  控制圆角以使其难以将振动传递到电路板,可以使用带有金属端子的类型,比如村田的KRM系列带金属端子多层陶瓷电容器,通过端子板等将陶瓷电容器浮起安装在电路板上,从而抑制振动向电路板传递。  村田的KRM系列带金属端子多层陶瓷电容器  对策2:带内插式基板低啸叫MLCC  控制圆角以使其难以将振动传递到电路板,也可以使用带内插式基板低啸叫片状多层陶瓷电容器,比如村田的ZR*系列。通过将陶瓷电容器贴装在插入板上,抑制电容器振荡传播的类型。  村田的ZR*系列带内插式基板低啸叫片状多层陶瓷电容器  对策3:使用不易产生啸叫的材料  使用不易产生啸叫的材料,比如村田的ECAS系列聚合物铝电解电容器。聚合物铝电解电容器的材料和结构都与陶瓷电容不同,因此该类型不会因电容而产生失真。  ECAS系列聚合物铝电解电容器  以上三种对策产品的参数和应用的对比如下图:  产品对比  总结  啸叫产生的机制  对电容器施加电压时,电路板会随着电压的振幅而振动,当振幅的周期位于可听频率范围(20Hz~20kHz)时,由电容器产生的啸叫就会作为“刺耳的声音”成为问题。  啸叫的评估方法  由于问题是“声音”,所以我们对声压级进行测量和评估并确认了替换效果。  仅靠声压级无法确定啸叫是否是由电容引起的。为了确认啸叫的产生机制,必须对电压变动进行测量和评估。(如有必要,还要对电路板的位移量进行测量和评估。)  笔记本电脑易发生啸叫的工作模式  笔记本电脑中易于发生啸叫的工作模式有三种:  (1)睡眠模式(降压转换器:PFM模式);  (2)液晶背光(升压转换器:PWM调光);  (3)摄像头模式/重负载模式(间歇工作)。  易于产生啸叫的电容器  易于产生啸叫的电容器通常有几个“特征”:  (1)电容器尺寸大;  (2)静电容量大;  (3)线电压和电压变动(电流变动)大;  (4)同一条线上安装了多个符合上述内容的陶瓷电容器。  在笔记本电脑中,电容器用于电源线(DC-DC转换器的一次侧)。电源线的电压一般较高,给功率较大的电路供电,所以容易产生电压变动,因此,这一部分易于产生啸叫。  本文讨论了笔记本电脑的替换评估方案。工作模式改变后,笔记本电脑内部的动作会发生变化,声压级/电压变动/电路板的位移量也会发生变化,因此有必要对每种易于产生啸叫的工作模式分别进行评估。在电源线(DC-DC转换器的一次侧)中使用了多个陶瓷电容器时,不是对电源线的部分电容器实施啸叫对策,而是将该电源线上的所有电容器全部替换为防啸叫产品,从而可以进一步降低声压级。
2025-12-10 13:23 reading:297
村田产品推荐 | 植入式医疗设备专用电容器
  从智能手机、LED照明等消费电子,到混合动力汽车、电动汽车,乃至对可靠性要求极高的航空航天与医疗设备,村田电容器都是其中至关重要的电子元件。  然而,民用消费电子与医疗(尤其是植入式设备)、车载等高性能设备,在可靠性理念上截然不同。前者侧重于成本控制,而后者则将可靠性置于首位,追求零缺陷。此外,两者在使用环境、寿命要求和评价标准上也存在显著差异。  在此为你介绍本公司的优势、医疗设备专用产品的概念以及代表性医疗设备专用电容器产品。  01 村田医疗设备专用电容器系列  村田针对医疗设备专用的电容器有很多代表性的产品医疗设备种类繁多,专用于“植入式医疗设备”与“便携式&可穿戴型医疗设备”的具有代表性的特色电容器产品包括:  植入式医疗设备的GCH/GCR系列。该系列电容器应用的医疗设备包括脑深部神经刺激装置、胃刺激装置、人工耳蜗、足下垂、心脏除颤器、起搏器、胰岛素泵等;  便携式&可穿戴型医疗设备的GRM系列,应用实例包括超声波回波、心电图、血气分析仪等。  下面主要介绍应用在植入式医疗设备的GCH/GCR系列。  02 植入式医疗设备 — GCH/GCR系列  植入式医疗设备种类繁多,比如脑深部神经刺激装置、胃刺激装置、人工耳蜗、足下垂、心脏除颤器、起搏器、胰岛素泵。植入式医疗设备的电路可以分为生命支持电路与非生命支持电路,村田专用于植入式医疗设备的电容器有GCH系列和GCR系列,其中村田建议GCR系列使用生命支持电路,GCH使用非生命支持电路。  非生命支持电路用于植入式诊断、植入式医疗康复、植入式神经刺激等。植入式医疗设备中的电路,由于故障而导致设备的功能下降或停止时,不会直接影响人的生命。植入式医疗设备  以心脏起搏器为例,起搏器这类植入式医疗设备需要植入体内,因此需解决通过设备小型化降低人体负担的课题(低侵袭化),近年来,小型化需求日益增长。鉴于此,本公司开发了可满足医疗标准的多层陶瓷电容器并完成商品化,其专用于植入式医疗设备,具备小型、大容量且高可靠性的特点。由此实现了植入式医疗设备的高密度设计,并为设备的进一步小型化做出了贡献。  村田对专用于植入式医疗设备的GCH/GCR系列实施了筛查,相比民生设备用MLCC的初始故障率低。此外,亦进行了延长寿命的设计。在耐湿负荷试验、热冲击循环等方面,民生设备用MLCC与高可靠性设备用MLCC的规格有很大不同。  03 GCH使用电路实例 — 心脏起搏器  下图是心脏起搏器(Pace Maker的)电路示意。C1为电池的储能电容器,C2是CPU去耦电容,C3是放电电路储能电容。心脏起搏器(Pace Maker)电路示意  这里,我们推荐村田的GCH系列:  C1 : 电池的储能电容  工作电压:1.8~3.6V  标称电压:6.3V~10V  容值范围:1~2.2uF  村田推荐:  GCH188R70J225KE01#(0603/6.3V/2.2uF)  GCH188C71A225KE01#(0603/10V/2.2uF)  C2 : CPU去耦电容  工作电压:0.9~1.2V  标称电压:6.3V~10V  容值范围:10~47uF  村田推荐:  GCH188R60J106ME11#  (0603/6.3V/10uF)  GCH188R61A106ME11#  (0603/10V/10uF)  C3 : 放电电路储能电容  工作电压:10~20V  标称电压:16V or 25V  容值范围:2.2~10uF  村田推荐:  GCH31CR71C106KE01#  (1206/16V/10uF)  GCH188R61C475KE11#  (0603/16V/4.7uF)  村田的GCH系列不断扩充小型、高容量产品系列,以期为植入式医疗设备的进一步小型化做贡献。  总结 :村田电容器的优势  村田电容器的优势在于持续的开发能力。  村田追求的小型大容量化重点在于电介质层的薄层化技术。确立了可高精度控制陶瓷粉体颗粒大小和形状及高密度且均匀分布的加工技术。更轻薄、更小巧、更准确。村田将继续开发高精尖电容器产品。
2025-12-04 16:00 reading:315
村田:基于多层LCP基材的低损耗超宽带天线设计与性能优
村田:MLCC更优?无线充电器中用多层陶瓷电容替换薄膜电容的评估
  无线充电器的谐振电路上有时安装的是薄膜电容器,MLCC更适于小型化,可有利于削减安装面积;另外,MLCC在器件表面温度控制和电力转换效率方面一般也具有优势。  这里为你介绍村田实施的、用多层陶瓷电容器(MLCC)替换薄膜电容器的评估。  评估对象  我们使用市面销售的无线充电器实施了替换评估。以下照片的红圈部分是原设计中作为谐振电容器而安装的薄膜电容器。  替换方案  原设计(上图)中薄膜电容器规格是7.3×6.5mm,0.33uF,63V。村田替换方案如下图所示,替换产品为GRM3195C2A104JA01(1206M,C0G,0.1uF,100V)。  方案评估  为了评估替换薄膜电容器后的结果,替换电容器前后,我们对充电时的以下特性(评估项目)进行了确认:  电容器表面上升温度  电力转换效率  测量电容器表面温度  电容器表面温度的测量条件设置如下:  操作环境:使用无线充电器时  测量环境:将无线充电器放入防风箱进行测量  测量设备:红外热摄像仪  测量时的室温:  测量薄膜电容器时:26.0°C  测量MLCC时:24.5°C最高温度:约57.0°C薄膜电容器:7.3×6.5mm,0.33uF,63V最高温度:约34.6°C  MLCC:GRM3195C2A104JA01(1206M,C0G,0.1uF,100V)×4pcs  本项测量确认出薄膜电容器和MLCC的表面上升温度之差为20°C以上。  此外,MLCC的ESR(电子自旋共振)低于薄膜电容器,能更低程度控制温度上升。ESR曲线对比图 :薄膜电容器 vs. MLCC  电力转换效率  使用上述电容器,对充电时的电力转换效率进行了评估。本项评估的确认结果为MLCC的电力转换效率比薄膜电容器优异2%以上。功率转换效率比较图 :薄膜电容器 vs. MLCC  总结  我们将无线充电器原设计中的薄膜电容器替换为MLCC,并对充电时电容器表面上升温度、以及电力转换效率特性进行了确认。结果显示,使用MLCC的方案优点突出,具体表现在以下三个方面:  电容器表面上升温度  确认出MLCC的ESR(电子自旋共振)低于薄膜电容器,薄膜电容器和MLCC的表面上升温度之差为20°C以上。  电力转换效率  确认结果为MLCC的电力转换效率比薄膜电容器优异2%以上。  空间优势  在MLCC和薄膜电容器的单体比较下,MLCC更适于小型化,可有利于削减安装面积。  替代方案使用了4个村田制作所的MLCC:GRM3195C2A104JA01(1206M,C0G,0.1uF,100V)。
2025-11-26 13:47 reading:348
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
model brand To snap up
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code