如何在开关模式电源中运用氮化镓技术
  本文阐释了在开关模式电源中使用氮化镓(GaN)开关所涉及的独特考量因素和面临的挑战。文中提出了一种以专用GaN驱动器为形式的解决方案,可提供必要的功能,打造稳固可靠的设计。此外,本文还建议将LTspice®作为合适的工具链来使用,以便成功部署GaN开关。  引言  氮化镓(GaN)是一种III-V族半导体,为开关电模式电源(SMPS)提供了出众的性能。GaN技术具有高介电强度、低开关损耗、高功率密度等特点,因此日益受到欢迎。  如今,市面上有众多基于GaN技术的开关可供选择。然而,与传统的MOSFET相比,由于需要采用不同的驱动方式,这些开关的应用在一定程度上受到了限制。图1.SMPS中电源开关的驱动。  图1展示了开关模式降压转换器(降压技术)中常用的半桥配置功率级。在此配置中使用GaN开关时,必须考虑到,与硅基开关相比,GaN开关的最大栅极电压耐受值通常较比较低。因此,在驱动过程中严格遵守最大栅极电压限制至关重要。  此外,连接高侧与低侧开关的开关节点会发生快速切换,这一现象不容忽视。这种快速切换不应导致GaN开关意外导通,而这种失效模式对于传统硅基开关来说并不常见。要缓解这一问题,可以为上升沿和下降沿设置独立的栅极控制线。  再者,在桥式拓扑结构中,GaN开关在死区时间内的线路损耗会增加。因此,在桥式应用场景中使用GaN 开关时,必须尽可能缩短死区时间,从而实现理想的性能表现。  为了有效满足GaN开关的特定控制需求,建议使用诸如LT8418之类的专用GaN驱动器IC。LT8418 GaN桥式驱动器性能出色,栅极充电时驱动强度可达4A,关断期间栅极放电强度更是高达8A。凭借独立的充放电控制线,可灵活调整上升与下降时间,保障电路稳定可靠运行。  在输入电压为48 V、输出电压为12 V、负载电流为12 A的情况下,图2中的电路实现了约97%的转换效率。值得注意的是,这一转换效率是在1 MHz的开关频率下达成的。  当构建使用GaN开关的功率级时,必须仔细优化电路板布局。快速的开关边沿与寄生电感相互作用,可能会产生不良的高电磁辐射。为了尽可能减少这些寄生电感,紧凑的电路设计不可或缺。正因如此,LT8418桥式驱动器采用了紧凑的晶圆级芯片尺寸封装(WLCSP),其尺寸仅为1.7 mm ×1.7 mm。  要想快速、高效地体验GaN开关的控制过程,强烈推荐使用免费的仿真环境LTspice。LTspice不仅包含LT8418 GaN驱动器的全面仿真模型,还配备了完整的外部电路。  结论  GaN开关已从小众产品发展成为电力电子领域的关键角色。凭借在效率与功率密度方面的显著优势,GaN开关在电压转换、电机驱动、D类音频放大器等多种应用场景中展现出强大吸引力。随着LT8418等优化驱动模块相继问世,控制这项新的电路技术已变得既简单又可靠。因此,GaN开关为电力电子技术的发展带来了巨大潜力。
关键词:
发布时间:2025-06-26 14:34 阅读量:174 继续阅读>>
村田推出首款支持引线键合的功率半导体用树脂模塑结构NTC热敏电阻,成功实现商品化
  株式会社村田制作所(以下简称“村田”)宣布,将功率半导体用NTC热敏电阻“FTI系列”商品化。该系列产品是村田首款※1采用树脂模塑结构且支持引线键合※2的NTC热敏电阻,通过设置在功率半导体附近,可以准确测量其温度。此外,其工作温度确保范围高达-55°C至175°C,适合用于产生大量热量的汽车动力总成用途※3。  ※1 根据村田内部调查,截至2025年4月。  ※2 引线键合是一种通过细金属线将半导体芯片与电极连接的封装技术。  ※3 包括逆变器、DC-DC转换器和车载充电器等将动力源产生的动力传输至车轮以使车辆行驶的系统。  近年来,随着汽车电子化和高性能化不断加速,高输出、高效率的功率半导体需求日益增长。然而,由于其工作时产生大量热量,过热导致器件损坏的风险成为一大技术挑战。为此,行业普遍采用在功率半导体附近配置热敏电阻以实时监测温度,并通过冷却系统或功率限制来保障安全运行。  然而,传统热敏电阻难以承受半导体焊盘上的高电压,无法直接贴装,通常需设置于较远位置,从而影响温度测量的准确性。这不仅降低了热管理的响应效率,还限制了功率半导体的性能发挥。  为了解决上述难题,村田开发了本款全新NTC热敏电阻产品。其采用树脂模塑结构,具备优异的绝缘性,可直接贴装于功率半导体焊盘上。同时,支持引线键合的设计,使其能够与焊盘实现高可靠连接,从而实现对半导体器件的精确温度监控。其-55°C至+175°C的宽广工作温度范围,也达到了行业领先水平,可在高温环境中实现稳定运行。  此外,该产品有助于减少功率半导体使用数量,在确保系统安全性的前提下,进一步降低贴装面积与系统成本,提升整体系统的设计灵活性。  为响应日益多元化的市场需求,村田未来将进一步丰富FTI系列热敏电阻的电阻值阵容,并推进支持银烧结贴装等多种安装方式的产品开发,持续为电动汽车等高集成半导体系统的技术升级提供支持。  产品特点  1. 村田首款支持引线键合的树脂模塑结构热敏电阻 可直接与功率半导体共用焊盘,精准测量其温度,提升温控效率。  2. 支持最高175°C的工作温度,稳定性卓越 采用高可靠性电极连接技术,工作温度范围宽广,性能稳定,适应严苛使用环境。  (产品顶面、底面照片)  (支持引线键合的示意图)  产品规格
关键词:
发布时间:2025-06-26 14:15 阅读量:189 继续阅读>>
高压 BMS 如何增强安全性并延长电池的使用寿命
  电池储能系统 (BESS) 在住宅、商业、工业和电网储能的管理中发挥着重要作用。在现代 BESS 中,电池管理系统 (BMS) 如同电池组的大脑,监测电压、电流和温度等参数,并深入了解充电状态(评估可用剩余电量)和运行状况(评估电池芯的整体状态和老化程度)。通过确保更好的电池监测器的精度并增强系统级安全性,BMS 可以有效维持能源使用效率,延迟电池的过早老化,从而延长 BESS 寿命。  确保电池监测器的精度  电池组监测器不仅可以提高电芯电压测量的精度,还有助于改善荷电状态估算和过压保护。荷电状态算法和其他高压系统诊断还需要准确报告电池组电压和电流。  磷酸铁锂 (LiFePO4) 电池因其可靠性和合理的成本而成为 BESS 中常用的电池类型,其高精度测量与系统运行的可靠性直接相关。LiFePO4 电池的电压曲线特征明显,在大部分有用容量内,充放电曲线基本保持平坦,从而在充电结束之前提供更稳定的工作电压;而当达到充电终点时,电压水平会迅速下降。如果未能检测到充放电曲线平坦区域的轻微电压变化,可能会增加荷电状态估算中出现误差的风险。  增强系统级安全性  各种因素会直接影响电池性能下降,包括过度充电和过度放电情况、高温、低温和充电电流过高。BMS 中的集成式监控和保护套件有助于降低这些情况的发生率。例如,集成式电芯均衡等功能可以通过确保电芯紧密均衡,防止较弱的“不均衡”电芯使整个电池组造成过载,从而大大延长电芯整体寿命。精确平衡和高精度电芯测量可缓解并检测电芯操作和调节中的低效情况。  在电池组的整个使用寿命期间,电芯之间的差异不断增加。随着电芯容量持续增加,在 ESS 中,仅采用被动均衡是不够的。主动电芯均衡和主动电池组均衡有助于延长 ESS 寿命并减少人工维护需求。  用于实现电池均衡的主动均衡设计方法使用双向隔离 DC/DC 转换器来实现能量传送,有助于提高整个系统的利用率。  实现长使用寿命  蓄电池的循环寿命随着每一代产品的更新,从 10,000 次提升到 12,000 次,甚至达到 15,000 次。这种增长有可能使产品的使用寿命在某一天达到 20 至 25 年。延长电池的使用寿命是 BESS 开发中的重要考虑因素,可帮助设计人员提供具有竞争力且高效的产品。  应用基础知识  图 1 展示了一个 BESS 架构。此系统适用于基于锂离子和 LiFePO4 电池的高压 (1,500V) 电池系统,包含多套完 整系统解决方案的参考设计。  适用于储能系统的高达 1,500V 的可堆叠电池管理单元参考设计结合了多个电池管理单元,这些单元利用 BQ78706 堆叠式电池监测器通过冗余数据测量功能来检测电池故障。  接着,适用于储能系统的 1,500V 高压机架监控单元参考设计展示了一种高压监测单元 (HMU),该单元采用 BQ79731-Q1 电池组监测器来实现总线电压和电流的检测和测量,并集成冗余数据测量功能。电池控制单元 (BCU) 能够可靠地驱动系统开关,从而帮助维持系统安全。图 1. BESS 架构方框图  实现精确的电池检测和可靠的系统架构  图 1 展示了 BCU 和 HMU 的组合如何用于实现系统级安全。HMU 中的 BQ79731-Q1 可实现高精度总线电压测量,最大精度为 ±3.16mV。该级别的精度水平有助于提高隔离阻抗测量和接触焊接检测的校准可靠性和操作简易性。BQ79731-Q1 还整合了连续采样模数转换器,具有低增益误差 (±0.065%) 和低失调电压 (-2.5µV 至 7.5µV)。 电压和电流测量诊断可通过使用安全机制(符合 TI 功能安全标准,达到汽车安全完整性等级 [ASIL] D)执行,这些机制由 BQ79731-Q1 提供支持,从而以可靠的测量结果实现系统级安全。  图 2 演示了适用于储能系统的 TI 电池控制单元参考设计,该设计采用 BQ78706 电池监测器,可在 –40°C 至 125°C 范围内实现 ±2.4mV 的电芯电压误差。该设计通过 TMUX 扩展和 TMP61 高精度(–25°C 至 65°C 时 ±1°C)热敏电阻传感器测量每个单独电芯通道的温度。在 BMU 中,将使用 BQ78706 的集成安全机制(符合 TI 功能安全标准 ASIL B 等级)诊断电芯电压和温度,以获得可靠的结果。基于 MSPM0G3519 的软件开发套件有助于简化设计过程,从而缩短上市时间。图 2. 适用于储能系统参考设计的电池控制单元参考设计图(显示了可堆叠 BMU 架构)  BMU 和 HMU 设计符合国际电工委员会 62477-2 和美国保险商实验室 1973 加强绝缘的要求,最高可达 1,500V。该设计可与 ISO7841 和 UCC33421 等增强型隔离器配合使用,也可与超宽爬电变压器以菊花链方式连接,确保充分的系统级安全性。  结语  安全可靠的 BMS 对于提高 ESS 的使用寿命、效率以及最重要的安全性方面发挥着关键作用,尤其是在当前电池技术由锂离子电池转向 LiFePO4 化学电池及更先进的方案的趋势下。BMS 设计方法提供精确的数据监测,并实现所有 ESS 模式下的电池组和电芯级均衡,从而最大限度地提高对太阳能、风能等可再生能源的能源利用率,这有助于在用电高峰期间稳定电网运行、或在断电期间提供稳定的备用电力支持。
关键词:
发布时间:2025-06-26 14:06 阅读量:184 继续阅读>>
新能源汽车高压平台OBC的可靠保障:上海永铭各类高性能电容器解决方案
  随着新能源汽车加速向大功率快充、双向充放电、高集成度方向演进,车载OBC技术升级——800V高压电气系统向1200V系统发展,高压平台架构成为快速充电的基础。  1. 电容器在车载OBC起到什么重要作用?  在高压的电池系统中,电容器作为OBC&DCDC的“储能与滤波枢纽”,其性能直接决定了系统的效率、功率密度与可靠性——无论是高压平台的瞬时冲击、高频功率波动,还是能量双向流动的复杂工况,都要求电容器在高压、高频、高温环境下保持稳定运行。因此,选用耐高压、高容量密度的电容器是决定车载OBC性能的关键因素。  2. 上海永铭电容器有何应用优势?  为应对高压系统下OBC&DCDC对电容器耐高压、小尺寸、长寿命、耐大纹波电流的严苛要求,永铭针对性推出高性能电容产品矩阵,赋能新能源汽车OBC&DCDC系统。  (1)液态牛角型铝电解电容:大功率场景的“稳压卫士”  · 高耐压:针对OBC中频繁遭遇的电压波动、电压尖峰等挑战,CW3H系列牛角电容具备充足的电压裕量设计,提供坚实的电压支撑和过压保护。出厂前经过严苛的高压老化和满载耐久性测试,确保其在OBC应用中的长期稳定性和高可靠性。  · 耐大纹波电流:OBC工作时因为功率转换频繁而产生突波电流,液态牛角型铝电解电容器在施加1.3倍额定纹波电流的情况下,温升保持平稳,产品性能稳定。  · 高容量密度:特殊铆接卷绕工艺有效提升功率密度,在相同体积下容量高出业内20%,同电压同容量我司尺寸更小,节省安装空间,满足整机小型化。  (2)液态插件铝电解电容器:高温紧凑空间的“效能突破者”  液态插件铝电解电容器LKD系列,可适配因体积限制无法使用液态牛角电容的方案,是车载OBC在高压、高频严苛环境下高效滤波与可靠储能需求的理想选择。  · 高耐温:在紧凑封装下实现105℃工作温度,远超普遍耐温85℃的电容器,为高温应用环境提供可靠保障。  · 高容量密度:同电压、同容量、同规格的情况下,LKD系列的直径和高度比牛角产品各小20%,高度不变直径可小40%。  · 优异电气性能密封性:得益于高耐温的设计,显著降低ESR,并具备强大的耐纹波电流能力。独特的密封材料和技术,造就了LKD的气密性优越于牛角电容,同时有效延长使用寿命,可满足105℃ 12000小时的需求。  (3)固液混合电容:高效与稳定的“双向桥梁”  · 高容量密度:与市面上相同体积的电容相比,永铭固液混合电容器的容值提升30%以上,宽温范围内电容容量值稳定在±5%范围。长期工作后,电容容值稳定在90%以上。  · 极低漏电流和低ESR:漏电流可控制在20μA以内,ESR可控制在8mΩ以内,且两者一致性好。即使在260℃高温回流焊制程后,ESR和漏电流依旧保持稳定。  (4)薄膜电容:长寿命与高可靠的“安全屏障”  与电解电容相比,薄膜电容的性能优势体现在耐压高、ESR 低、无极性、性能稳定、寿命长等方面,这使得其应用系统设计更简化、抗纹波能力更突出、在苛刻环境中使用更可靠。  · 超高耐压:最大1200V以上的高电压耐受力,无需串联,能承受额定工作电压1.5倍。  · 超强纹波能力:3μF/A的纹波耐受力是传统电解电容的50倍以上。  · 全生命周期寿命保证:100000小时以上的使用寿命,干式和无保质期限的。在相同的使用条件下,薄膜电容能够更长时间地保持其性能。
关键词:
发布时间:2025-06-26 13:43 阅读量:180 继续阅读>>
罗姆与芯驰科技联合开发出车载SoC X9SP参考设计,配备罗姆面向SoC的PMIC,助力智能座舱普及!
  6月25日,全球知名半导体制造商罗姆(总部位于日本京都市)宣布,与领先的车规芯片企业芯驰科技面向智能座舱联合开发出参考设计“REF68003”。该参考设计主要覆盖芯驰科技的智能座舱SoC*1“X9SP”产品,其中配备了罗姆的PMIC*2产品,并在2025年上海车展芯驰科技展台进行了展示。2025年上海车展芯驰科技展台现场照片右三:芯驰科技 创始人 仇雨菁      左二:芯驰科技 创始人 CTO 孙鸣乐左三: 罗姆半导体(上海)有限公司 董事长 米泽 秀一  芯驰科技的X9系列产品全面覆盖仪表、IVI、座舱域控、舱泊一体等从入门级到旗舰级的座舱应用场景,已完成百万片量级出货,量产经验丰富,生态成熟。盖世汽车研究院最新数据(国内乘用车上险量)显示, 2025年1-3月,在10万元以上的车型中,芯驰科技的X9系列座舱芯片(包括仪表、中控和域控)装机量位 居本土第一名,覆盖上汽、奇瑞、长安、一汽、广汽、北汽、东风日产、东风本田等车企的50多款主流车型和大量出海的车型。  芯驰科技与罗姆于2019年开始技术交流,并一直致力于合作开发智能驾驶舱的应用。2022年,双方签 署了车载领域的先进技术开发合作协议。迄今为止,双方通过结合芯驰科技的车载 SoC“X9H”、“X9M”和“X9E”、以及罗姆的PMIC、SerDes IC*3 以及 LED 驱动器 IC ,共同开发了面向智能驾驶舱的参考设计。  2025 年,面向中高端智能座舱,芯驰科技与罗姆联合开发出基于车载 SoC“X9SP”的新参考设计 “REF68003”。罗姆提供用于SoC的PMIC“BD96811F44-C”、BD96806Q04-C”、“BD96806Q05-C”和“BD96806Q06-C”,符合ISO 26262以及ASIL-B*4,有助于实现各种高性能车载应用。今后,罗姆将继续开发适用于汽车信息娱乐系统的产品,为提高汽车的便利性和安全性贡献力量。  芯驰科技 CTO 孙鸣乐表示:“随着汽车智能化的快速发展,对汽车电子和零部件的要求也越来越高。 X9SP是芯驰X9系列高性能座舱SoC的核心旗舰产品,面向智能座舱与跨域融合场景设计,具备高性能和高可靠性,特别适用于舱泊一体的解决方案。新开发的参考设计将罗姆的PMIC与X9SP相结合,以提高整体系统的稳定性和能效。我们期待与罗姆继续合作,在未来提供各种创新的车载解决方案。”  罗姆董事 高级执行官 立石 哲夫表示:“我们非常高兴能够与车载SoC领域领先公司——芯驰科技联合开发新的参考设计。集成了信息娱乐以及ADAS功能监控等各种功能的智能座舱正在加速普及,尤其在下一代电动汽车中,PMIC等车载模拟半导体产品的作用变得越来越重要。罗姆此次提供的SoC用PMIC是能够灵活地应用于新一代车载电源并满足功能安全要求的电源IC。今后,通过继续加深与芯驰科技的交流与合作,罗姆将会加快开发支持下一代智能座舱多功能化发展的产品,为汽车行业的进一步发展做出贡献。”  <背景>  近年来正在普及的智能驾驶舱,除了具备仪表集群和信息娱乐系统等多种功能之外,还加速了大型显示器的采用。与此同时,车载SoC所要求的处理能力也在增加,因此要求作为核心器件承担电力供给的 PMIC等电源IC兼顾支持电流和高效工作。  罗姆提供面向SoC的PMIC,不仅稳定性和效率性高,还可通过内部存储器(OTP)进行任意输出电压设定和顺序控制。通过最小限度的电路变更,可构建面向各种车型、模型的电源系统,为削减汽车制造商的开发工时做出贡献。  关于配备了“X9SP”和罗姆产品的参考设计“REF68003”  “REF68003”配备了芯驰科技的智能座舱用SoC“X9SP”以及罗姆的SoC用PMIC。目前,该参考设计已在芯驰科技验证完毕。利用该参考设计,可实现达到安全等级ASIL-B的智能座舱。另外,罗姆提供的 SoC用PMIC,可使用内部存储器(OTP)进行任意输出电压设置和时序控制,因此可根据具体的电路需求高效且灵活地供电。  该参考设计利用芯驰科技自有的硬件虚拟化支持功能,支持在单个SoC上运行多个OS(操作系统)。同时,利用硬件安全管理模块,还可将来自OS的命令传递给SoC和GPU。此外,通过替换成引脚兼容的芯驰科技其他SoC,还可以在不更改电路的前提下快速更改规格。  ・关于芯驰科技的智能座舱SoC“X9SP系列”  https://www.semidrive.com/product/X9SP  ・关于罗姆的参考设计页面  有关参考设计的详细信息以及配备于其中的产品信息,已在罗姆官网上发布。  URL:https://www.rohm.com.cn/reference-designs/ref68003  关于参考设计的更详细信息,请通过销售代表或罗姆官网的“联系我们”页面进行垂询。  关于芯驰科技  芯驰科技是全场景智能车芯引领者,专注于提供高性能、高可靠的车规芯片,覆盖智能座舱和智能车控领 域,涵盖了未来汽车电子电气架构最核心的芯片类别。芯驰全系列芯片均已量产,出货量超800万片。芯驰目前拥有超200个定点项目,服务超过260家客户,覆盖国内90%以上主机厂及部分国际主流车企,包括上汽、奇瑞、长安、东风、一汽、日产、本田、大众、理想等。如欲进一步了解详情,请访问芯驰科技官网: https://www.semidrive.com/  关于罗姆  罗姆是成立于1958年的半导体电子元器件制造商。通过铺设到全球的开发与销售网络,为汽车和工业设备市场以及消费电子、通信等众多市场提供高品质和高可靠性的IC、分立半导体和电子元器件产品。在罗姆自身擅长的功率电子领域和模拟领域,罗姆的优势是提供包括碳化硅功率元器件及充分地发挥其性能的驱动IC、以及晶体管、二极管、电阻器等外围元器件在内的系统整体的优化解决方案。如需了解更多信息,请访问罗姆官网:https://www.rohm.com.cn/  <术语解说>  *1) SoC(System-On-a-Chip:系统单芯片)  集成了CPU(中央处理单元)、存储器、接口等的集成电路。为了实现高处理能力、电力效率、空间削减,在车载设备、民生设备、产业设备领域被广泛使用。  *2)PMIC(电源管理IC)  一种内含多个电源系统、并在一枚芯片上集成了电源管理和时序控制等功能的IC。与单独使用DC-DC转换器IC、LDO及分立元器件等构成的电路结构相比,可以显著节省空间并缩短开发周期,因此近年来,无论在车载设备还是消费电子设备领域,均已成为具有多个电源系统的应用中的常用器件。  *3) SerDes IC  为了高速传输数据而成对使用、用来进行通信方式转换的两个IC的总称。串行器(Serializer)用来将数据转换为易于高速传输的格式(将并行数据转换为串行数据),解串器(Deserializer)用来将传输的数据转换为原格式(将串行数据转换为并行数据)。  *4) ISO 26262、ASIL(Automotive Safety Integrity Level)  ISO 26262是2011年11月正式颁布实施的汽车电子电气系统功能安全相关的国际标准。是一种旨在实现“功能安全”的标准化开发流程。需要计算车载电子控制中的故障风险,并将降低其风险的机制作为功能之一预先嵌入系统。该标准覆盖了从车辆概念阶段到系统、ECU、嵌入软件、设备开发及其生产、维护和报废阶段的车辆开发整个生命周期。 ASIL是ISO 26262中定义的风险分类系统,共分4个等级,风险等级越高,对功能安全的要求就越高。
关键词:
发布时间:2025-06-26 13:10 阅读量:199 继续阅读>>
罗姆的SiC MOSFET应用于丰田全新纯电车型“bZ5”
  ~应用于牵引逆变器,助力续航里程和性能提升~  6月24日,全球知名半导体制造商罗姆(总部位于日本京都市)宣布,搭载了罗姆第4代SiC MOSFET裸芯片的功率模块,已应用于丰田汽车公司(TOYOTA MOTOR CORPORATION.,以下简称“丰田”)面向中国市场的全新跨界纯电动汽车(BEV)“bZ5”的牵引逆变器中。  “bZ5”作为丰田与比亚迪丰田电动车科技有限公司(以下简称“BTET”)、一汽丰田汽车有限公司(以下简称“一汽丰田”)联合开发的跨界纯电动汽车,由一汽丰田于2025年6月正式发售。  此次采用的功率模块由罗姆与正海集团的合资企业——上海海姆希科半导体有限公司(HAIMOSIC (SHANGHAI)Co., Ltd.)进行量产供货,其中以SiC MOSFET为核心的罗姆功率解决方案,为这款新型纯电动汽车的续航里程和性能提供了重要保障。  罗姆目前正加速推进SiC功率元器件的研发进程,计划于今年完成下一代(即第5代)SiC MOSFET的生产线建设,并提前布局第6代和第7代产品的市场投放规划。  未来,罗姆将继续致力于元器件性能和生产效率的提升,通过强化裸芯片、分立器件、功率模块等各种形态的全方位SiC供应体系,进一步推动SiC技术的普及,为实现可持续交通贡献力量。  关于“bZ5”  丰田与BTET、一汽丰田等企业联合开发的跨界纯电动汽车,以“Reboot”为开发理念,采用动感且具标志性的造型设计。针对Z世代年轻用户需求,着力打造兼具个性化与舒适性的驾乘空间。续航能力方面,低配版本可达550公里,高配版本则实现了630公里(CLTC标准)的续航表现。  该车已于2025年4月22日(第二十一届上海国际汽车工业展览会开幕前日)开启预订,引发广泛关注。  关于上海海姆希科半导体有限公司(HAIMOSIC (SHANGHAI) Co., Ltd.)  上海海姆希科半导体有限公司是由正海集团有限公司(中方)与罗姆株式会社(日方)共同成立的中日合资企业。HAIMOSIC(海姆希科)主要从事碳化硅半导体功率模块的研发、设计、制造及销售,预期产能 36万个/年。项目总投资额为4.5亿元人民币,注册资金2.5亿元人民币。更多详情请访问HAIMOSIC官网(http://www.haimosic.com/)。
关键词:
发布时间:2025-06-26 11:14 阅读量:191 继续阅读>>
芯讯通SIM8262E-M2再添全球认证,助力客户畅行海外市场
  芯讯通5G R16模组SIM8262E-M2成功通过 CE(RED)、RoHS、REACH、JATE、TELEC、GCF、ANATEL以及德国电信(Deutsche Telekom)等多项国际认证,协助客户轻松跨越海外市场准入门槛,以更快速度将产品推向全球,抢占5G应用市场先机。  SIM8262E-M2基于高通骁龙X62平台打造,支持Sub-6GHz TDD/FDD频段,数据传输速率最高可达2.4Gbps,能快速完成高清视频、海量数据的传输,确保复杂指令即时响应。同时支持WCDMA,网络覆盖范围广,即便在海外信号微弱或复杂的区域,也能让设备始终保持高速、稳定的网络连接,为终端产品在全球市场的稳定运行保驾护航。  在规格设计上,SIM8262E-M2采用仅30.0×42.0×2.3 mm的紧凑M.2规格,适配行业接口标准,支持USB 3.1、PCIe及GPIO等接口,可简化系统设计与集成流程,助力开发者缩短产品上市周期。  想象一下,在海外的繁华都市,搭载SIM8262E-M2的5G CPE为无数家庭和企业搭建起稳定高速的网络;在旅途中,5G MIFI让多台设备随时畅享5G网络;在工业生产线上,工业物联网设备通过SIM8262E-M2实现远程智能监控与精准控制;在车联网领域,自动驾驶、智能座舱因它而更安全、智能。SIM8262E-M2凭借稳定性能与灵活适配性,助力客户终端产品在海外市场脱颖而出。  随着核心国际认证的全面落地,SIM8262E-M2已正式助力全球范围内5G网络的规模化部署。每一个认证都是开拓海外市场的“通行证”,芯讯通期待与您合作,共同开拓全球5G市场新蓝海!
关键词:
发布时间:2025-06-26 10:30 阅读量:176 继续阅读>>
一文了解高温天气对芯片的影响
  随着科技的不断发展,芯片已成为现代电子设备的核心部分,无论是智能手机、电脑,还是各种工业设备,都离不开芯片的支持。然而,在高温天气下,芯片的工作性能和寿命可能受到严重影响。  1. 性能下降  高温环境会导致芯片内部的电子元件过度发热,从而增加其电阻,降低信号传输速度。这可能导致芯片运行不稳定,处理能力下降,甚至出现系统崩溃的情况。  2. 加速老化  芯片在高温条件下会加快材料的老化过程,尤其是封装材料和半导体材料。长时间暴露在高温中,可能导致芯片内部的导线、绝缘层等发生老化失效,缩短芯片的使用寿命。  3. 增加热故障风险  过高的温度可能引发芯片过热保护失效,甚至引起短路、烧毁等热故障。一旦芯片过热,可能导致硬件损坏,严重时会引发设备整体失效。  4. 影响散热效率  高温环境下,散热成为一大难题。芯片散热不及时会导致温度继续上升,形成恶性循环,进一步影响运行稳定性。  5. 降低能效  芯片在高温环境下工作时,为了保持稳定运行,可能需要增加冷却措施(如风扇、散热片等),这会带来能耗增加,降低整体能效。  高温天气对芯片的影响不可忽视。在设计电子设备时,应采取有效的散热措施,如使用散热片、风扇,甚至液冷系统。同时,在使用过程中应避免设备长时间处于高温环境中,以延长芯片的使用寿命和保证设备的稳定性。只有合理应对高温天气,才能充分发挥芯片的性能,确保电子设备的安全与可靠。
关键词:
发布时间:2025-06-25 16:35 阅读量:221 继续阅读>>
恩智浦完成对TTTech Auto的收购,加速向软件定义汽车转型
村田首款面向5.9GHz车联网通信的车规级噪声对策铁氧体磁珠BLM15VM系列实现商品化
  株式会社村田制作所(以下简称“村田”)宣布,针对5.9GHz频段车联网(C-V2X)(1)通信的噪声抑制需求,成功开发并商品化其首款(2)片状铁氧体磁珠——BLM15VM系列。该系列产品计划于2025年7月启动量产。  近年来,随着汽车市场对高频无线通信应用的日益普及,其用途正从信息传输向自动驾驶、先进驾驶辅助系统(ADAS)及V2X(3)等安全关键领域扩展。为确保设备稳定运行,高频通信的灵敏度要求不断提高,噪声对策的重要性愈发凸显。  传统GHz频段噪声抑制方案主要依赖高频电感器,其高阻抗特性集中于特定窄频带,需精确匹配噪声频率。村田凭借在噪声抑制元器件领域长期积累的特有的材料技术和优化结构设计,成功开发出具备宽频带高阻抗特性的BLM15VM系列产品。该系列显著拓宽了噪声抑制频带,仅需该系列磁珠即可轻松实现高效的噪声过滤解决方案。  高频通信是自动驾驶的重要基础。BLM15VM系列能有效提升5.9GHz频段C-V2X通信以及工作于5.8GHz频段的专用短程通信(DSRC)(4)设备的接收灵敏度,帮助实现控制系统稳定运行。  此外,鉴于Wi-Fi 6E和Wi-Fi 7等无线局域网通信标准也使用6GHz频段,BLM15VM系列同样适用于改善民用通信设备的灵敏度及噪声抑制。村田未来将持续扩展该铁氧体磁珠产品线,以满足更广泛的市场需求。  主要特点  1. 高频阻抗:1000Ω(典型值)@5.9GHz  2. 封装尺寸:1005尺寸(1.0×0.5mm),实现小型化  3. 工作温度范围:-55℃至150℃  4. 高可靠性:符合AEC-Q200(5)车规标准  5. 适用领域:适用于汽车动力传动系统等安全应用  主要规格  主要用途  1. C-V2X通信  2. DSRC通信等各类V2X通信应用  注释  1. C-V2X (Cellular-V2X):由3GPP于2016年标准化的V2X通信技术,基于蜂窝通信技术,当前主要使用LTE-V2X。  2. 特有产品(基于村田调查,截至2024年11月25日):包括Sub 6GHz频段在内,具备高频高阻抗特性,专为消除C-V2X高频通信干扰噪声而设计。  3. V2X(Vehicle to Everything):涵盖车对车(V2V)、车对基础设施(V2I)等无线通信方式的信息共享系统统称,是实现自动驾驶的关键技术,部分区域正研究强制搭载。  4. DSRC (专用短程通信):基于IEEE 802.11p标准,主要用于道路交通信息等V2X控制系统。  5. AEC-Q200:汽车电子委员会(AEC)制定的被动元器件汽车级可靠性测试标准。
关键词:
发布时间:2025-06-25 11:36 阅读量:187 继续阅读>>

跳转至

/ 927

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
型号 品牌 抢购
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码