Fibocom-Powered Robotic Mower Solution Featured at SPOGA+GAFA 2025, Pioneering the Future of Boundary-Free Smart Lawn Care
  Cologne, Germany – June 24, Fibocom, a global leader incommunication modules and AI solutions, had its state-of-the-art intelligentrobotic lawn mower solution prominently showcased at SPOGA+GAFA 2025, theworld’s leading trade fair for the garden and outdoor living industry. Multiplerobotic lawn mowers powered by Fibocom’s technology demonstrated seamlessnavigation across simulated garden environments—autonomously detectingboundaries, planning precise mowing routes, and avoiding obstacles—all withoutrelying on traditional physical perimeter wires. This impressive demonstrationhighlighted the disruptive potential of AI-driven, boundary-free lawn caresolutions.  The global smartrobotic mower market holds vast potential, with Europe and North Americaaccounting for 72% of the world’s 250 million private gardens. Yet, adoptionremains low—under 6% in North America and 10–30% in Europe—highlightingsubstantial room for growth as demand for intelligent lawn care accelerates.  Fibocom’ssolution integrates advanced AI vision, multi-sensor fusion, and intelligentnavigation to eliminate the need for traditional boundary wires. This enablesrobotic mowers to autonomously detect perimeters and obstacles, ensuring safe,efficient, and precise operation while significantly improving mowing productivity.It’s worth mentioning that, having accumulated over 350,000 kilometers ofreliable autonomous performance worldwide, this solution has proven itsrobustness in diverse and complex garden environments.  Fibocom provides two solution variantstailored to diverse customer needs: a standard pure-vision model and a flagshipversion combining binocular VIO (Visual-Inertial Odometry) with RTK (Real-TimeKinematic) for superior stability, precision, and large-area coverage—ideal forprofessional and commercial applications. This comprehensive suite, encompassingstereo cameras, AI processing boards, motor control units, and customizablemobile applications, enables OEM partners to accelerate product developmentcycles and focus resources on product differentiation and go-to-marketstrategies. For end users, it revolutionizes lawn care with smart mapping,autonomous operation, and auto-recharging for a safer, easier experience.  Strategic partnerships with top global brandsare fast-tracking the launch of Fibocom-powered products in key internationalmarkets over the next six months, underscoring Fibocom’s technologicalleadership and growing influence in the smart lawn care industry. Leveragingcutting-edge innovation and manufacturing excellence, Fibocom empowers partnersto penetrate top-tier European retail channels and scale globally, where everyimpeccably maintained lawn showcases the strength of Chinese smartmanufacturing on the world stage.
Key word:
Release time:2025-07-11 11:28 reading:160 Continue reading>>
GigaDevice GD32C231 Series MCU — Redefining Cost-Performance, Unleashing New Potential
  GigaDevice, a leading semiconductor company specializing in Flash memory, 32-bit microcontrollers (MCUs), sensors, and analog products, today officially launched the value-packed GD32C231 series of entry-level microcontrollers, further expanding its Arm® Cortex®-M23 core product lineup. As the leader in China's largest Arm® MCU market, GigaDevice positions the GD32C231 series as a "high-performance entry-level" solution designed to offer more competitive options for applications including small home appliances, BMS (Battery Management Systems), small-screen display devices, handheld consumer products, industrial auxiliary controls, and automotive aftermarket systems.  With over 2 billion cumulative MCU shipments and a mature supply chain, GigaDevice's newly launched GD32C231 series overcomes the performance limitations of traditional entry-level chips through innovative design. The series not only integrates a rich set of peripherals but also adopts an industrial-grade wide-voltage process and offers a comprehensive ecosystem. While maintaining exceptional cost-effectiveness, this affordable MCU supports more complex application scenarios, redefining value standards in the entry-level MCU market and ushering in a new era of "affordable yet high-spec" solutions.  GD32C231 Series MCUs: The Ultimate Choice for Cost-Effectiveness  The GD32C231 series MCUs deliver a significant upgrade in computing performance and peripheral features while maintaining excellent price competitiveness, achieving an ultra-high cost-performance balance. Built on Arm's advanced Cortex®-M23 core architecture, the series offers up to 10% higher performance than Cortex®-M0+, with clock speeds reaching 48MHz. It supports efficient processing capabilities such as integer division, greatly enhancing software execution efficiency.  In terms of memory configuration, the series features 32KB to 64KB of highly reliable embedded Flash and 12KB of low-power SRAM, with full memory areas equipped with ECC error correction. To meet the demands of diverse applications, multiple package options are available, including TSSOP20/LGA20, QFN28, LQFP32/QFN32, and LQFP48/QFN48. Thanks to its highly integrated chip design, the series effectively reduces the number of external components, providing users with a bill-of-materials (BOM) cost-optimized solution.  The Perfect Balance of Wide Voltage Support, Low Power, and Fast Wake-up Time  The GD32C231 series delivers exceptional power flexibility and energy efficiency, supporting a wide operating voltage range from 1.8V to 5.5V and a broad temperature range from -40°C to 105°C. This makes it highly adaptable for deployment in harsh and demanding environments. Featuring multiple power management modes, the device consumes as little as 5μA in deep sleep mode and offers ultra-fast 2.6μs wake-up time - achieving an optimal balance between low power consumption and real-time performance. These capabilities make the GD32C231 ideal for battery-powered and portable applications.  Reliable Operation for Safety-Critical Applications  Engineered for reliability, the GD32C231 provides robust ESD protection - meeting 8kV contact discharge and 15kV air discharge standards. Full ECC error correction is applied across Flash and SRAM memory, helping to prevent data corruption. An integrated hardware CRC module further enhances data transmission integrity. These features ensure the MCU performs reliably in safety-critical environments such as industrial automation and automotive electronics.  Highly Integrated Peripherals for Flexible Design  The GD32C231 series integrates a comprehensive set of peripherals, significantly enhancing system integration and design flexibility:  A 12-bit ADC with 13 external channels and 2 internal comparators for precise analog signal measurement.  Up to 4 general-purpose 16-bit timers and 1 advanced 16-bit timer for versatile time-based operations.  2 high-speed SPI interfaces (including quad QSPI at 24Mbps), 2 I²C interfaces (supporting Fast Mode+ at 1Mbit/s), and 3 UARTs (up to 6Mbps) for robust serial communication.  An integrated 3-channel DMA controller and 1 I²S interface for efficient peripheral data handling.  With support for up to 45 GPIOs in a 48-pin package, the GD32C231 offers excellent expandability for complex designs. These rich peripheral resources empower the MCU to meet the demands of a wide range of applications - from consumer electronics to industrial control systems - with ease and reliability.  Full-Stack Ecosystem Support for Efficient Development  The GD32C231 series is backed by a comprehensive development ecosystem designed to accelerate product design and time-to-market. Standard software libraries and resources are readily available on GigaDevice's official website.  To support developers throughout the entire development cycle, GigaDevice provides extensive documentation, including datasheets, user manuals, hardware design guidelines, application notes, and porting references - enabling rapid onboarding for both hardware and software development. A complete SDK firmware package is also offered, featuring rich sample code and development board resources that cover everything from low-level drivers to advanced applications.  The GD32 MCU family natively supports FreeRTOS, offering developers a lightweight, open-source, and high-efficiency real-time operating system. To streamline development even further, GigaDevice offers the GD32 Embedded Builder IDE - its proprietary development environment that integrates graphical configuration and intelligent code generation, reducing design complexity. The GD32 All-In-One Programmer supports essential Flash operations such as programming, erasing, reading, and option byte configuration. Meanwhile, the GD-Link debugger provides dual-mode SWD/JTAG support with plug-and-play functionality for a seamless debugging experience. GigaDevice also collaborates closely with third-party programming tool providers to offer customers a wide range of programming and debugging options.  Additionally, the GD32C231 series is fully compatible with major international toolchains including Arm® Keil, IAR Embedded Workbench, and SEGGER Embedded Studio, ensuring flexibility across various development platforms. For typical use cases, GigaDevice provides robust application solutions and reference designs - helping developers shorten design cycles, simplify product validation, and accelerate the path to mass production.
Key word:
Release time:2025-07-10 14:22 reading:298 Continue reading>>
Murata Unveils First High-Frequency XBAR Filter for Next-Gen Networks
  Murata Manufacturing Co., Ltd. has announced the mass production and commercial shipment of the world’s first*1 high-frequency filter using XBAR technology*2. Developed by combining Murata’s proprietary Surface Acoustic Wave (SAW) filter expertise with XBAR technology from Murata's subsidiary Resonant Inc., it enables the extraction of desired signals while achieving both low insertion loss and high attenuation. These features are critical for the latest wireless technologies, including 5G, Wi-Fi 6E, Wi-Fi 7, and emerging 6G technologies.  The demand for reliable high-frequency communications continues to grow in response to the widespread deployment of 5G and the future development of 6G. Simultaneously, wireless local-area network (WLAN) standards such as Wi-Fi 6E and Wi-Fi 7 are expanding into higher frequency domains to accommodate ultra-fast data rates. Filters used in these applications must address key challenges, such as preventing out-of-band interference, maximizing system battery performance, and meeting strict space limitations. Traditional approaches using Low Temperature Co-Fired Ceramic (LTCC) or conventional Bulk Acoustic Wave (BAW) filters often fall short in these performance areas.  Murata’s new XBAR-based filter addresses these limitations by achieving high attenuation performance while maintaining a wide bandwidth and low signal loss. The XBAR structure itself excites bulk acoustic waves using comb-shaped electrodes and a piezoelectric single-crystal thin film, enabling performance beyond the reach of conventional filter structures. It effectively removes high-frequency interference, even in bands above 3 GHz, allowing for clearer signal detection and better performance, contributing to high-speed, high-capacity, and high-quality wireless communication.  Key performance parameters include a passband of 5150–7125 MHz, a typical insertion loss of 2.2 dB, and a typical return loss of 17 dB. Typical attenuation figures are 11 dB at 4800–5000 MHz, 28 dB at 3300–4800 MHz, 27 dB at 7737–8237 MHz, and 26 dB at 10300–14250 MHz.  The new filter is targeted at devices with embedded wireless functionality, including smartphones, wearables, notebook PCs, and communication gateways, offering an optimal balance of performance and cost efficiency. Murata will continue to drive innovation in filter technologies to support the evolution of wireless communications, and expects this architecture to scale further, with future product generations capable of operating effectively in ultra-high frequency bands above 10GHz.  Notes  *1According to Murata research as of July 7, 2025.  *2XBAR technology: Murata’s proprietary filter structure that excites bulk acoustic waves using comb-shaped electrodes and piezoelectric single-crystal thin films.
Key word:
Release time:2025-07-10 14:15 reading:238 Continue reading>>
Murata Begins World’s First Mass Production of 47µF Multilayer Ceramic Capacitor in 0402-inch Size
  Murata Manufacturing Co., Ltd. has begun the world’s first mass production of the 0402-inch size (1.0 × 0.5 mm) multilayer ceramic capacitors (MLCC) with a capacitance of 47µF*. The new product line, available in two variants with different temperature characteristics, is designed to advance MLCC miniaturization and enhance customer system performance.  In recent years, high-performance IT solutions, such as those used in AI servers and data centers, have seen rapid growth. Due to the often high component density demanded by these devices, optimized component placement within limited PCB areas is paramount. As a result, there is increasing demand for capacitors that offer both miniaturization and higher capacitance, along with high reliability under high-temperature conditions caused by heat generated from PCBs and integrated circuits (ICs).  In response to these requirements, Murata has utilized its proprietary technologies in ceramic dielectric layers and internal electrode miniaturization to facilitate the world’s first mass production of this innovative 47µF product in the compact 0402-inch size. Compared to Murata’s conventional 0603-inch size product with the same capacitance, this new capacitor reduces mounting area by approximately 60%. Additionally, it delivers about 2.1 times the capacitance of Murata’s previous 22µF product in the same 0402-inch size.  The MLCC is available in two variants – the X5R (EIA) GRM158R60E476ME01 with an operating temperature range of -55 to +85°C, and the X6S (EIA) GRM158C80E476ME01 with an operating temperature range of -55 to +105°C. The ability to operate in environments up to 105°C, makes the X6S variant well-suited for placement near ICs, thereby contributing to improved device performance and integration. Both devices feature a ±20% tolerance and rated voltage of 2.5Vdc.  Murata is committed to advancing miniaturized capacitors with higher capacitance and improved high-temperature reliability to meet evolving market demands. These innovations not only support the ongoing miniaturization and functional enhancement of electronic devices but also contribute to lower material usage and increased production efficiency per unit, ultimately helping reduce power consumption at Murata’s factories and lessen environmental impact.  For inquiries regarding this product, please contact us.  Notes  *Based on Murata research as of July 9, 2025.
Key word:
Release time:2025-07-10 14:13 reading:243 Continue reading>>
ROHM Releases New Level 3 SPICE Models Featuring Enhanced Simulation Speed
  ROHM has announced the release of new Level 3 (L3) SPICE models that deliver significantly improved convergence and faster simulation performance.  Since power semiconductor losses greatly impact overall system efficiency, simulation accuracy during the design phase is critical. ROHM’s earlier Level 1 SPICE models for SiC MOSFETs addressed this need by precisely replicating key device characteristics. However, challenges such as simulation convergence issues and prolonged computation times revealed the need for further refinement.  The new L3 models utilize a simplified approach that maintains both computational stability and accurate switching waveforms while reducing simulation time by approximately 50% compared to the L1 models. This allows for high-accuracy transient analysis of the entire circuits at significantly faster speed, streamlining device evaluation and loss assessment in the application design phase.  As of April 2025, ROHM has released 37 L3 models for its 4th Generation SiC MOSFETs, available for download directly from the Models & Tools section of each product page. The L1 models will continue to be offered alongside the new versions. A comprehensive white paper is also provided that facilitates model adoption.  The models can be downloaded from the Models & Tools section on individual 4th Generation SiC MOSFET product pages  Related Information  • White Papers  • Design Model Support Page  • SiC MOSFET Technical Documentation  Looking ahead, ROHM remains committed to advancing simulation technology to enable the design for higher-performance and more efficient applications, driving continued innovation in power conversion systems.
Key word:
Release time:2025-07-10 13:36 reading:248 Continue reading>>
ROHM Develops an Ultra-Compact MOSFET Featuring Industry-Leading* Low ON-Resistance Ideal for Fast Charging Applications
  ROHM has developed a 30V N-channel MOSFET — AW2K21 — in a common-source configuration that achieves an industry-leading ON-resistance of 2.0mΩ (typ.) in a compact 2.0mm × 2.0mm package.  With the rise of compact devices featuring large-capacity batteries, such as smartphones, the need for fast charging functionality to shorten charging times continues to grow. These applications require bidirectional protection to prevent reverse current flow to peripheral ICs and other components when not actively supplying or receiving power. What’s more, fast charging involves high current power transfer, leading smartphone manufacturers to demand stringent specifications for MOSFETs, including a maximum current rating of 20A, breakdown voltage between 28V and 30V, and an ON-resistance of 5mΩ or less. However, meeting these requirements with standard solutions typically necessitates the use of two large low ON-resistance MOSFETs, increasing board space along with mounting complexity.  In response, ROHM developed an ultra-compact low ON-resistance MOSFET optimized for fast high-power charging. The AW2K21 adopts a proprietary structure that enhances cell density while minimizing the ON-resistance per unit chip area. Two MOSFETs are integrated into a single package, allowing a single part to support bidirectional protection applications (commonly required in power supply and charging circuits).  The proprietary structure also places the drain terminal on the top surface, unlike on the backside in standard vertical trench MOS structures. This enables the use of a WLCSP, which achieves a larger chip-to-package area ratio that further reduces ON-resistance per unit area. As a result, the new product not only minimizes power loss but also supports high current operation, making it ideal for high-power fast charging applications despite its ultra-compact size.  For example, in power supply and charging circuits for compact devices, standard solutions typically require two 3.3mm × 3.3mm MOSFETs. In contrast, the AW2K21 can achieve the same functionality with a single 2.0mm × 2.0mm unit, reducing the footprint and ON-resistance by approximately 81% and 33%, respectively. Even compared to similarly sized GaN HEMTs, ON-resistance is decreased by up to 50%, contributing to lower power consumption and increased space savings across a variety of applications.  The AW2K21 is also suitable for use as a unidirectional protection MOSFET in load switch applications, where it maintains the industry’s lowest ON-resistance. At the same time, ROHM is further pushing the limits of miniaturization with the development of an even smaller 1.2mm × 1.2mm model.  Going forward, ROHM remains dedicated to supporting the miniaturization and energy efficiency of electronic systems through compact, high-performance solutions that contribute to the realization of a sustainable society.  Key Product Characteristics  Application Examples  • Smartphones  • VR (Virtual Reality) headsets  • Compact printers  • Tablets     • Wearables           • LCD monitors  • Laptops     • Portable gaming consoles    • Drones  And other applications equipped with fast charging capability.  Terminology  MOSFET (Metal Oxide Semiconductor Field Effect Transistor)  A field-effect transistor (FET) featuring a metal oxide semiconductor structure (the most commonly used type). It consists of three terminals: gate, drain, and source. Applying a voltage to the gate (control terminal) regulates current flow from the drain to the source.  N-channel MOSFETs turn ON when a positive voltage is applied to the gate relative to the source. A common-source configuration MOSFET integrates two transistor elements that share a single source terminal.  ON-Resistance  The resistance between the Drain and Source of a MOSFET when it is in the ON state. A smaller RDS(on) reduces power loss during operation.  Breakdown Voltage  The maximum voltage that can be applied between the drain and source terminals of a MOSFET without causing damage. Exceeding this limit results in dielectric breakdown, potentially leading to device failure or malfunction.  WLCSP (Wafer Level Chip Scale Package)  An ultra-compact package in which terminals and wiring are formed directly on the wafer before separated into individual chips. Unlike general packages where the chips are cut from the wafer and then molded with resin to form terminals, WLCSP allows the package size to match the chip itself, making it possible to further reduce size.  GaN HEMT  GaN (Gallium Nitride) is a compound semiconductor material used in next-generation power devices. It offers superior physical properties over conventional silicon, enabling higher frequency operation with faster switching speeds. HEMT stands for High Electron Mobility Transistor.
Key word:
Release time:2025-07-08 17:04 reading:266 Continue reading>>
Renesas Strengthens Power Leadership with New GaN FETs for High-Density Power Conversion in AI Data Centers, Industrial and Charging Systems
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, introduced three new high-voltage 650V GaN FETs for AI data centers and server power supply systems including the new 800V HVDC architecture, E-mobility charging, UPS battery backup devices, battery energy storage and solar inverters. Designed for multi-kilowatt-class applications, these 4th-generation plus (Gen IV Plus) devices combine high-efficiency GaN technology with a silicon-compatible gate drive input, significantly reducing switching power loss while retaining the operating simplicity of silicon FETs. Offered in TOLT, TO-247 and TOLL package options, the devices give engineers the flexibility to customize their thermal management and board design for specific power architectures.  The new TP65H030G4PRS, TP65H030G4PWS and TP65H030G4PQS devices leverage the robust SuperGaN® platform, a field-proven depletion mode (d-mode) normally-off architecture pioneered by Transphorm, which was acquired by Renesas in June 2024. Based on low-loss d-mode technology, the devices offer superior efficiency over silicon, silicon carbide (SiC), and other GaN offerings. Moreover, they minimize power loss with lower gate charge, output capacitance, crossover loss, and dynamic resistance impact, with a higher 4V threshold voltage, which is not achievable with today’s enhancement mode (e-mode) GaN devices.  Built on a die that is 14 percent smaller than the previous Gen IV platform, the new Gen IV Plus products achieve a lower RDS(on) of 30 milliohms (mΩ), reducing on-resistance by 14 percent and delivering a 20 percent improvement in on-resistance output-capacitance-product figure of merit (FOM). The smaller die size reduces system costs and lowers output capacitance, which results in higher efficiency and power density. These advantages make the Gen IV Plus devices ideal for cost-conscious, thermally demanding applications where high performance, efficiency and small footprint are critical. They are fully compatible with existing designs for easy upgrades, while preserving existing engineering investments.  Available in compact TOLT, TO-247 and TOLL packages, they provide one of the broadest packaging options to accommodate thermal performance and layout optimization for power systems ranging from 1kW to 10kW, and even higher with paralleling. The new surface-mount packages include bottom side (TOLL) and top-side (TOLT) thermal conduction paths for cooler case temperatures, allowing easier device paralleling when higher conduction currents are needed. Further, the commonly used TO-247 package provides customers with higher thermal capability to achieve higher power.  “The rollout of Gen IV Plus GaN devices marks the first major new product milestone since Renesas’ acquisition of Transphorm last year,” said Primit Parikh, Vice President of the GaN Business Division at Renesas. “Future versions will combine the field-proven SuperGaN technology with our drivers and controllers to deliver complete power solutions. Whether used as standalone FETs or integrated into complete system solution designs with Renesas controllers or drivers, these devices will provide a clear path to designing products with higher power density, reduced footprint and better efficiency at a lower total system cost.”  Unique d-mode Normally-off Design for Reliability and Easy Integration  Like previous d-mode GaN products, the new Renesas devices use an integrated low-voltage silicon MOSFET – a unique configuration that achieves seamless normally-off operation while fully capturing the low loss, high efficiency switching benefits of the high- voltage GaN. As they use silicon FETs for the input stage, the SuperGaN FETs are easy to drive with standard off-the-shelf gate drivers rather than specialized drivers that are normally required for e-mode GaN. This compatibility simplifies design and lowers the barrier to GaN adaptation for system developers.  GaN-based switching devices are quickly growing as key technologies for next-generation power semiconductors, fueled by demand from electric vehicles (EVs), inverters, AI data center servers, renewable energy, and industrial power conversion. Compared to SiC and silicon-based semiconductor switching devices, they provide superior efficiency, higher switching frequency and smaller footprints.  Renesas is uniquely positioned in the GaN market with its comprehensive solutions, offering both high- and low-power GaN FETs, unlike many providers whose success in the field has been primarily limited to lower power devices. This diverse portfolio enables Renesas to serve a broader range of applications and customer needs. To date, Renesas has shipped over 20 million GaN devices for high- and low-power applications, representing more than 300 billion hours of field usage.
Key word:
Release time:2025-07-04 15:04 reading:307 Continue reading>>
Renesas Sets New MCU Performance Bar with 1-GHz RA8P1 Devices with AI Acceleration
Unprecedented 7300+ CoreMarks1 with Dual Arm CPU coresTSMC 22ULL Process Delivers High Performance and Low Power ConsumptionEmbedded MRAM with Faster Write Speeds and Higher Endurance and RetentionDedicated Peripherals Optimized for Vision and Voice AI plus Real-Time AnalyticsNew AI Software Framework Eases Development and Enables Easy Migration with MPUsLeading-Edge Security Features Ensure Data Privacy  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, introduced the RA8P1 microcontroller (MCU) Group targeted at Artificial Intelligence (AI) and Machine Learning (ML) applications, as well as real-time analytics. The new MCUs establish a new performance level for MCUs by combining 1GHz Arm® Cortex®-M85 and 250MHz Cortex-M33 CPU cores with the Arm Ethos™-U55 Neural Processing Unit (NPU). This combination delivers the highest CPU performance of over 7300 CoreMarks and AI performance of 256 GOPS at 500 MHz.  Designed for Edge/Endpoint AI  The RA8P1 is optimized for edge and endpoint AI applications, using the Ethos-U55 NPU to offload the CPU for compute intensive operations in Convolutional and Recurrent Neural Networks (CNNs and RNNs) to deliver up to 256 MACs per cycle that yield 256 GOPS performance at 500 MHz. The new NPU supports most commonly used networks, including DS-CNN, ResNet, Mobilenet TinyYolo and more. Depending on the neural network used, the Ethos-U55 provides up to 35x more inferences per second than the Cortex-M85 processor on its own.  Advanced Technology  The RA8P1 MCUs are manufactured on the 22ULL (22nm ultra-low leakage) process from TSMC, enabling ultra-high performance with very low power consumption. This process also enables the use of embedded Magnetoresistive RAM (MRAM) in the new MCUs. MRAM offers faster write speeds along with higher endurance and retention compared with Flash.  “There is explosive growth in demand for high-performance edge AIoT applications. We are thrilled to introduce what we believe are the best MCUs to address this trend,” said Daryl Khoo, Vice President of Embedded Processing Marketing Division at Renesas. “The RA8P1 devices showcase our technology and market expertise and highlight the strong partnerships we have built across the industry. Customers are eager to employ these new MCUs in multiple AI applications.”  “The pace of innovation in the age of AI is faster than ever, and new edge use cases demand ever-improving performance and machine learning on-device,” said Paul Williamson, Senior Vice President and General Manager, IoT Line of Business at Arm. “By building on the advanced AI capabilities of the Arm compute platform, Renesas’ RA8P1 MCUs meet the demands of next generation voice and vision applications, helping to scale intelligent, context-aware AI experiences.”  “It is gratifying to see Renesas harness the performance and reliability of TSMC 22ULL embedded MRAM technology to deliver outstanding results for its RA8P1 devices,” said Chien-Hsin Lee, Senior Director of Specialty Technology Business Development at TSMC. “As TSMC continues to advance our embedded non-volatile memory (eNVM) technologies, we look forward to strengthening our long-standing collaboration with Renesas to drive innovation in future groundbreaking devices.”  Robust, Optimized Peripheral Set for AI  Renesas has integrated dedicated peripherals, ample memory and advanced security to address Voice and Vision AI and Real-time Analytics applications. For vision AI, a 16-bit camera interface (CEU) is included that supports sensors up to 5 megapixels, enabling camera and demanding Vision AI applications. A separate MIPI CSI-2 interface offers a low pin-count interface with two lanes, each up to 720Mbps. In addition, multiple audio interfaces including I2S and PDM support microphone inputs for voice AI applications.  The RA8P1 offers both on-chip and external memory options for efficient, low latency neural network processing. The MCU includes 2MB SRAM for storing intermediate activations or graphics framebuffers. 1MB of on-chip MRAM is also available for application code and storage of model weights or graphics assets. High-speed external memory interfaces are available for larger models. SIP options with 4 or 8 MB of external flash in a single package are also available for more demanding AI applications.  New RUHMI Framework  Along with the RA8P1 MCUs, Renesas has introduced RUHMI (Renesas Unified Heterogenous Model Integration), a comprehensive framework for MCUs and MPUs. RUHMI offers efficient AI deployment of the latest neural network models in a framework agnostic manner. It enables model optimization, quantization, graph compilation and conversion, and generates efficient source code. RUHMI provides native support for machine-learning AI frameworks such as TensorFlow Lite, Pytorch & ONNX. It also provides the necessary tools, APIs, code-generator, and runtime needed to deploy a pre-trained neural network, including ready-to-use application examples and models optimized for RA8P1. RUHMI is integrated with Renesas’s own e2Studio IDE to allow seamless AI development. This integration will facilitate a common development platform for MCUs and MPUs.  Advanced Security Features  The RA8P1 MCUs provide leading-edge security for critical applications. The new Renesas Security IP (RSIP-E50D) includes numerous cryptographic accelerators, including CHACHA20, Ed25519, NIST ECC curves up to 521 bits, enhanced RSA up to 4K, SHA2 and SHA3. In concert with Arm TrustZone®, this provides a comprehensive and fully integrated secure element-like functionality. The new MCUs also provides strong hardware Root-of-Trust and Secure Boot with First Stage Bootloader (FSBL) in immutable storage. XSPI interfaces with decryption-on-the-fly (DOTF) allow encrypted code images to be stored in external flash and decrypted on the fly as it is securely transferred to the MCU for execution.  Ready to Use Solutions  Renesas provides a wide range of easy-to-use tools and solutions for the RA8P1 MCUs, including the Flexible Software Package (FSP), evaluation kits and development tools. FreeRTOS and Azure RTOS are supported, as is Zephyr. Several Renesas software example projects and application notes are available to enable faster time to market. In addition, numerous partner solutions are available to support development with the RA8P1 MCUs, including a driver monitoring solution from Nota.AI and a traffic/pedestrian monitoring solution from Irida Labs. Other solutions can be found at the Renesas RA Partner Ecosystem Solutions Page.  Key Features of the RA8P1 MCUs  Processors: 1GHz Arm Cortex-M85, 500MHz Ethos-U55, 250 MHz Arm Cortex-M33 (Optional)  Memory: 1MB/512KB On-chip MRAM, 4MB/8MB External Flash SIP Options, 2MB SRAM fully ECC protected, 32KB I/D caches per core  Graphics Peripherals: Graphics LCD controller supporting resolutions up to WXGA (1280x800), parallel RGB and MIPI-DSI display interfaces, powerful 2D Drawing engine, parallel 16bit CEU and MIPI CSI-2 camera interfaces, 32bit external memory bus (SDRAM and CSC) interface  Other Peripherals: Gigabit Ethernet and TSN Switch, XSPI (Octal SPI) with XIP and DOTF, SPI, I2C/I3C, SDHI, USBFS/HS, CAN-FD, PDM and SSI audio interfaces, 16bit ADC with S/H circuits, DAC, comparators, temperature sensor, timers  Security: Advanced RSIP-E50D cryptographic engine, TrustZone, Immutable storage, secure boot, tamper resistance, DPA/SPA attack protection, secure debug, secure factory programming, Device Lifecycle management  Packages: 224BGA, 289BGA
Key word:
Release time:2025-07-04 14:56 reading:294 Continue reading>>
Murata Launches World’s First 10µF/50Vdc MLCC in 0805-inch Size for Automotive Applications
  Murata Manufacturing Co., Ltd. has announced the new GCM21BE71H106KE02 multilayer ceramic capacitor (MLCC) has entered mass production. The device is the world's first 0805-inch size (2.0 x 1.25 mm) MLCC to offer a capacitance of 10µF with a 50Vdc rating and is specifically engineered for automotive applications*. This cutting-edge product marks a significant advancement in MLCC design, delivering a smaller 0805-inch package while maintaining capacitance, voltage rating, and MLCC reliability.  Advancements in advanced driver-assistance systems (ADAS) and autonomous driving (AD) technologies necessitate deploying an increased number of integrated circuits (ICs) within vehicle systems. This surge in ICs simultaneously leads to a greater demand for supporting high-capacitance passive components while imposing tighter spatial constraints – as a greater number of capacitors must be accommodated on increasingly crowded automotive printed circuit boards (PCBs).  Designed for 12V automotive power lines, the GCM21BE71H106KE02 capacitor leverages Murata’s proprietary ceramic material and thinning technologies to help engineers to save PCB space and reduce the overall capacitor count, resulting in smaller, more efficient, and reliable automotive systems. As the first automotive-specific MLCC to achieve a 10µF capacitance with a 50Vdc rating in the compact 0805-inch size the GCM21BE71H106KE02 represents a significant advancement in capacitance efficiency. It offers roughly 2.1 times the capacitance of Murata’s previous 4.7µF/50Vdc product, despite sharing the same physical size. Furthermore, compared to the previous 10µF/50Vdc MLCC in the larger 1206-inch size (3.2 x 1.6 mm), the new MLCC occupies approximately 53% less space, providing substantial space savings for automotive applications.  Murata will continue to pursue further miniaturization and increased capacitance of MLCCs, while expanding its product lineup to meet the evolving needs of the automotive market. These efforts will support the industry as they look to develop higher-performance and more multifunctional vehicles. In addition, by downsizing electronic components, Murata aims to reduce material usage and improve production efficiency per unit, helping to lower electricity consumption at its manufacturing sites and reduce overall environmental impact.
Key word:
Release time:2025-07-04 13:59 reading:326 Continue reading>>
ROHM Introduces a New MOSFET for AI Servers with Industry-Leading* SOA Performance and Low ON-Resistance
  ROHM has released of a 100V power MOSFET - RY7P250BM - optimized for hot-swap circuits in 48V power systems used in AI servers and industrial power supplies requiring battery protection to the market.  As AI technology rapidly advances, data centers are facing unprecedented processing demands and server power consumption continues to increase annually. In particular, the growing use of generative AI and high-performance GPUs has created a need to simultaneously improve power efficiency while supporting higher currents. To address these challenges, the industry is shifting from 12V systems to more efficient 48V power architectures. Furthermore, in hot-swap circuits used to safely replace modules while servers remain powered on, MOSFETs are required that offer both wide SOA (Safe Operating Area) and low ON-resistance to protect against inrush current and overloads.  The RY7P250BM delivers these critical characteristics in a compact 8080-size package, helping to reduce power loss and cooling requirements in data centers while improving overall server reliability and energy efficiency. As the demand for 8080-size MOSFETs grows, this new product provides a drop-in replacement for existing designs. Notably, the RY7P250BM achieves wide SOA (VDS=48V, Pw=1ms/10ms) ideal for hot-swap operation. Power loss and heat generation are also minimized with an industry-leading low ON-resistance of 1.86mΩ (VGS=10V, ID=50A, Tj=25°C), approximately 18% lower than the typical 2.28mΩ of existing wide SOA 100V MOSFETs in the same size.  Wide SOA tolerance is essential in hot-swap circuits, especially those in AI servers that experience large inrush currents. The RY7P250BM meets this demand, achieving 16A at 10ms and 50A at 1ms, enabling support for high-load conditions conventional MOSFETs struggle to handle.  ROHM’s new product has also been certified as a recommended component by leading global cloud platform provider, where it is expected to gain widespread adoption in next-generation AI servers. Especially in server applications where reliability and energy efficiency are mission-critical, the combination of wide SOA and low RDS(on) has been highly evaluated for cloud infrastructure.  Going forward, ROHM will continue to expand its lineup of 48V-compatible power solutions for servers and industrial equipment, contributing to the development of sustainable ICT infrastructure and greater energy savings through high-efficiency, high-reliability products.  Application Examples  • 48V AI server systems and power supply hot-swap circuits in data centers  • 48V industrial equipment power systems (i.e. forklifts, power tools, robots, fan motors)  • Battery-powered industrial equipment such as AGVs (Automated Guided Vehicles)  • UPS and emergency power systems (battery backup units)  Online Sales InformationSales Launch Date: May 2025  Pricing: $5.50/unit (samples, excluding tax)  Online Distributors: DigiKey™, Mouser™ and Farnell™  The products will be offered at other online distributors as they become available.  Applicable Part No: RY7P250BM  EcoMOS™ BrandEcoMOS™ is ROHM's brand of silicon MOSFETs designed for energy-efficient applications in the power device sector.  Widely utilized in applications such as home appliances, industrial equipment, and automotive systems, EcoMOS™ provides a diverse lineup that enables product selection based on key parameters such as noise performance and switching characteristics to meet specific requirements.  TerminologyHot-Swap Circuit  A circuit that enables components to be inserted or removed while the system remains powered on.  It typically consists of MOSFETs, protection elements, and connectors, and is responsible for suppressing inrush current and protecting against overcurrent conditions, ensuring stable operation of the system and connected components.  Power MOSFET  A MOSFET designed for power conversion and switching applications. N-channel MOSFETs are the dominant type, turning on when a positive voltage is applied to the gate relative to the source. They offer lower ON-resistance and higher efficiency than P-channel variants. Due to their low conduction loss and high-speed switching performance, power MOSFETs are commonly used in power supplies, motor drives, and inverter circuits.  SOA (Safe Operating Area)  The defined range of voltage and current in which a device can operate reliably without risk of failure. Operating outside this boundary may result in thermal runaway or permanent damage. SOA is especially critical in applications exposed to inrush currents or overcurrent conditions.  Low ON-resistance (RDS(on))  The resistance value between the Drain and Source of a MOSFET during operation. A smaller RDS(on) reduces power loss during operation.  Inrush Current  A sudden surge of current that momentarily exceeds the rated value when an electronic device is powered on. Proper control of this current reduces stress on power circuit components, helping to prevent device damage and stabilize the system.
Key word:
Release time:2025-07-03 14:52 reading:241 Continue reading>>

Turn to

/ 235

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
model brand To snap up
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code