开关电源核心30问:从原理到设计,一文彻底掌握

Release time:2025-09-23
author:AMEYA360
source:网络
reading:783

  现代电子设备要稳定工作,电源很关键。开关稳压电源(也叫SMPS)因效率高、体积小、能适应不同的输入电压,现在应用得特别广,小到手机充电器,大到工厂机器都在用。这篇文章整理了开关电源的30个核心要点,帮你系统掌握它的原理和实际应用。

开关电源核心30问:从原理到设计,一文彻底掌握

  1、什么是线形串联稳压电源?

  答:线性稳压电源是指在稳压电源电路中的调整功率管工作于线性放大区;串联型开关稳压电源电路是指其储能电感串联在输入与输出电压之间。

  由变压器,整流、滤波电路和线性稳压电路组成。

  2、什么是开关稳压电源?

  答:它由全波整流器、开关功率管V、PWM控制与驱动器、续流二极管VD、储能电感L、输出滤波电容C和采样反馈电路等组成。实际上,开关稳压电源的核心部分是一个支流变压器。

  3、开关稳压电源的种类?

  1)按激励方式分:他激式和自激式

  2)按调制方式分:脉宽调制型、频率调制型和混合型

  3)按开关功率管电流的工作方式分:开关式和谐振式

  4)按功率开关的类型分:晶体管式、可控硅型、MOSFET型和IGBT型

  5)按储能电感的连接方式分:串联型和并联型

  6)按功率开关的连接方式分:单端正激式、单端反激式、推挽式、半桥式、全桥式

  7)按输入和输出的电压大小分:升压式、降压式、输出极性反转式

  8)按工作方式分:可控整流式、斩波式、隔离型

  9)按电路结构分:散件式、集成电路式

  4、降压型开关稳压电源的工作原理?

  答:把驱动方波信号加到功率开发V的基极上,这样功率开关就会按照驱动方波信号的频率周期性的导通与关闭,其工作过程可以用功率开关的导通以及开关稳压电源实现动态平衡等过程来解说。

  1)在Ton=t1-t0期间,功率开关导通,续流二极管因反向偏置二截止,虽然输入电压时一个直流电压,但电感中电流不能突变,电感中的电流将线性上升,并以磁能的形式在储能电感中存储能量,在t1时刻,储能电感中的电流上升到最大值。

  2)在Toff=t2-t1期间,功率开关截止,但是在t1时刻,由于功率管刚刚截止,并且储能电感中的电流不能突变,于是L两端产生了与原来两端电压极性相反的自感电动势。此时,续流二极管开始正向导通,储能电感所存储的磁能将以电能的形式通过续流二极管和负载电阻开始泄放。所泄放的电流的波形就是锯齿波中随时间下降的那一段电流。在t2时刻,储能电感中的电流达到最小值。

  3)只有当功率开关导通期间Ton内储能电感增加的电流等于功率开关关闭期间内减少的电流时,才能达到动态平衡,可得出U0=Ton/T*Ui。

  5、降压型开关稳压电源的设计?

  1)功率开关V的选择:输出功率在数十千瓦以上时,选IGBT;输出功率在数千瓦之间时,选MOSFET;输出功率在数千瓦以下时,GTR。一旦功率开关V的类型选定后,具体的器件型号的选择就应该遵循以下原则:

  ①功率开关V的导通饱和压降Uces越小

  ②V截止时的反向漏电流Ico越小越好

  ③V的高频特性要好

  ④V的开关时间要短,即转换速度要快

  ⑤V的基极驱动功率要小

  ⑥V的反向击穿电压应满足:Uc=2*1.3*Ui=2.26*Ui

  2)续流二极管VD的选择:

  ①VD的正向额定电流必须等于或大于功率开关V的最大集电极电流,即应该大于负载电阻R1上的电流。

  ②VD的方向耐压值必须大于输入电压Ui值。

  ③为了减少由于开关转换所引起的输出纹波电压,VD应选择反向恢复速度和导通速度都非常快的肖特基二极管或快恢复二极管。

  ④为了提高整机的转换效率,减少内部损耗,一定要选择正向导通管压降低的肖特基二极管。

  3)储能电感L的选择:

  ①L的临界值Lc=R1*(1-D)/2F

  ②L=R1max*(1-D)/1.5F

  4)输出滤波电容C的选择:C=U0*(1-U0/Ui)(8L*F*F*deltaUo)

  6、升压型开关稳压电源的工作原理?

  答:当功率开关处于导通期间是,输入电压加到储能电感的两端,二极管因被反向偏置二截止,流过储能电感上的电流为近似线性上升的锯齿波电流,并以磁能的形式存储在储能电感中。

  当功率开关截止时,储能电感两端的电压极性相反,此时二极管被正向偏置而导通,存储在储能电感中的能量通过二极管传输给负载电阻和滤波电容,储能电感中的泄放电流是锯齿波电流线性的下降部分。

  在功率开关饱和导通期间,在储能电感中增加的电流数值应该等于功率开关截止期间在储能电感中减少的电流数值,只有这样才能达到动态平衡,得出U0=Ui*D/(1-D)。

  7、PWM电路的组成?

  答:PWM发生器、PWM驱动器、PWM控制器等。有电压控制型的、电流控制型的和软开关控制型的。

  8、极性反转型开关稳压电源的工作原理?

  答:极性反转型开关稳压电源电路中的功率开关导通时,二极管因反向偏置而截止,功率开关截止时,二极管因争相偏置而导通,此时储能电感中储存的能量将会通过二极管传输给负载,输出电压与输入电压之间的关系为U0=−Uin*D/(1-D)

  9、升压型开关稳压电源和极性反转型开关稳压电源的区别?

  答:升压型开关稳压电源电路实际上是发射极输出式并联型开关稳压电源电路,而极性反转型开关稳压电源电路实际上是集电极输出式并联型开关稳压电源电路。从形式上看,他们之间的差别只是把功率开关与储能电阻的位置进行了调换。从输出特性上看,他们的输出电压极性正好相反。

  10、常见的控制电路?

  答:取样、比较、基准源、振荡器、脉宽调制器(PWM) 或脉频调制器(PFM)等电路。

  11、开关稳压电源的输出端常见的不稳定因素?

  答:过流、过压、欠压、过热。

  12、什么是开关稳压电源的驱动电路?它的种类?

  答:

  定义:驱动电路就是能在关断时迅速地关断,并维持关断器件的漏电流近似等于零;在导通时迅速导通,并维持导通期间的管压降近似等于零的驱动信号电路。

  种类:单端脉冲变压器、抗饱和、固定反偏压、比例、互补、发射极开路式。

  13、开关稳压电源中保护电路的要求?它的种类?

  答:要求:

  ①软启动自动保护电路的延迟时间一定要大于开关稳压电源电路中一次整流和滤波电路的恢复时间,该恢复时间主要是指一次整流后滤波电容的充电时间。

  ②过流、过压、欠压和过热等保护电路中的采样处理、反馈控制和关断功率开关等过程所用的时间总和要小雨功率转换周期时间,也就是说,这些保护电路的控制关断速度一定要快,只有这样才能够做到既保护了负载系统,又保护了稳压电源电路本身免遭破坏。

  ③对于过流保护电路来说,当导致产生过流现象的故障被排除或过流现象恢复后,稳压电源电路要能够自动恢复正常工作。另外,对于一些较为先进的电子设备和机电产品中的电源系统,不但要求具有各种保护电路,而且要求具有各种保护状态显示以及自诊断功能。

  保护电路的种类:过压、过流、欠压、过热、过载、开关软启动。

  14、什么是一次击穿与二次击穿?二者有什么差别?

  答:

  一次击穿:当反向电压增大到一定数值时,载流子倍增效应就像雪崩一样,增加得快而多,反向电流突然增加,这就是雪崩击穿的现象,也叫一次击穿。

  二次击穿:雪崩击穿以后,当电流增大到某一值,集电极—发射级之间的电压突然下降,而集电极电流剧增,这种现象叫二次击穿。

  区别:

  ①从功率开关的二次击穿特性曲线来看,二次击穿后,集电极电压比一次击穿后的集电极电压低很多;

  ②一次击穿是可逆的,二次击穿不可逆。

  ③一次击穿取决于给功率开关所加电压的高低,而二次击穿则是取决于功率开关上所加的能量的大小和积累时间的长短。

  ④产生一次击穿的原因是明确的,但产生二次击穿的原因尚未被我们完全掌握。

  15、什么是一次整流和滤波,什么是二次整流和滤波?

  答:

  一次整流电路:开关稳压电源电路中的输入电路部分的工频整流电路就称为开关稳压电源的一次整流电路,都是把工频电网电压或者其他形式的交流输入电压的直接引入,进行全波整流,然后输送给下一级的一次滤波电路进行滤波,最后变成直流输出电压,为后级的功率变换器供电。

  一次滤波:开关稳压电源电路中的一次滤波电路即为一次整流电路后面的由电感和电容组成的L形滤波电路。它的主要功能是将一次全波整流电路输出的直流波动电压滤波或纹波电压符合设计要求的直流电压。

  二次整流:二次电流电路时出现在开关变压器次级回路中的整流电路,一般为高频整流电路,整流二极管常采用高频快速开关二极管,即肖特基二极管。在无工频变压器的开关稳压电源电路中,开关二极管或续流二极管即为二次整流部分的整流二极管。

  二次滤波:开关稳压电源电路中的高频滤波电路部分被称为二次滤波电路。滤波电容的取值与开关稳压电源输出直流电压纹波电压的高低有密切关系,一般采用由电阻、电感和电容等无源器件组成的无源滤波电路。

  16、隔离技术:在开关稳压电源电路中,解决两个不工地的独立单元如何隔离问题的技术。

  耦合技术的分类:光电耦合技术、变压器磁耦合技术、光电与磁混合耦合技术以及直接耦合技术。

  17、单端式开关稳压电源的分类?

  按激励方式分:自激式单管直流变换器;它激式单管直流变换器;自激式双管直流变换器;它激式双管直流变换器;它激式全桥型直流变换器。

  按功率开关变压器的极性分:单管正激式直流变换器;单管反激式直流变换器

  按功率开关的种类分:GTR(晶体管)型直流变换器;MOSFET(绝缘栅型场效应管)型直流变换器;IGBT(复合功率模块)型直流变换器

  18、什么是开关稳压电源的屏蔽技术?它的分类?

  答:屏蔽技术有两层意思:

  一是把环境中的杂散电磁波和其他干扰信号(其中包括工频电网上的杂散电磁波)阻挡在被屏蔽用电系统的外面,以防止和避免这些杂散电磁波和其他干扰信号对该用电系统的干扰和破坏。

  二是把本用电系统内的振荡信号源或交变功率辐射源通过电路中的各个环节和各种途径向外辐射或传播的电磁波阻挡在本用电系统的内部,以防止和避免传播和辐射出去污染环境和干扰周围的其他用电系统。

  分类:

  软屏蔽技术:开关稳压电源电路的设计者在进行电路设计时,采取有效的电路技术(如共模滤波器技术、差模滤波器技术、双向滤波器技术、低通滤波器技术等各种滤波器技术)一方面将开关稳压电源电路内部的高频电磁波对外部的传播和辐射抑制和滤除到最小程度,以免影响周围的其他电子设备、电子仪器和电子仪表的正常工作,同时也不污染工频电网;另一方面将输入工频电网上杂散的电磁波也抑制和滤除到最小程度,以免影响开关稳压电源电路的正常工作;

  硬屏蔽技术:对电场的屏蔽技术、对磁场的屏蔽技术以及对电磁场的屏蔽技术。

  20、为什么要有消振电路?

  答:当电源电路加电后,在功率开关的集电极就会得到瞬间矩形波振荡脉冲信号,该信号具有正向峰值和负向峰值。有时这个正向和负向上冲的峰值电压可以比直接加到功率开关集电极的输入电压高2-3倍左右。这样高的上冲峰值电压特别容易照成功率开关被二次击穿而损坏,因此引入两个消振衰减电路。一个为了消除由于功率开关变压器的漏磁而引起的上冲峰值电压,一个是为了消除由于功率开关的电压、电流应力而引起的上冲峰值电压。

  21、什么是高频整流电路?

  答:在一般整流情况下,高频功率开关变压器次级回路中所有整流二极管采用快恢复特性的开关二极管,特别对要求输出电流较大的还需要采用肖特基二极管,这种应用有特殊要求的在高频状态下工作的整流电路即高频整流电路。

  22、单端自激式反激型直流变换电路的三种工作状态:

  答:次级绕组电流临界状态;次级绕组电流不连续状态;次级绕组电流连续状态。

  23、单端它激式正激型直流变换电路与单端自激式正激型直流变换电路的区别?

  答:

  ①前者功率开关变压器与PWM振荡器无关,而后者的功率开关变压器要作为PWM振荡电路中的一个重要元件参与振荡工作。

  ②前者的功率开关V具有独立的PWM振荡器、驱动器、控制器等,并由一个集成电路担任,而后者不另设独立的PWM振荡器、驱动器、控制器等电路。

  ③前者功率开关V与PWM振荡器无关,而后者的功率开关V与开关变压器一样要作为PWM振荡电路中的一个重要元件参与振荡工作。

  ④前者对起振电路要求不严,而后者对起振电路的要求非常严格。

  24、单端它激式正激型直流变换器开关变压器已知条件?

  答:

  1)电路结构与形式;

  2)工作频率或周期时间;

  3)变压器输入最高或最低电压;

  4)总的输出路数和每一路输出的电压和电流值;

  5)功率开关的最大导通时间;

  6)隔离电位;

  7)所要求的漏感和分布电容值;

  8)工作环境和条件。

  25、单端它激式反激型直流变换器开关变压器已知条件?

  答:

  1)电路结构形式;

  2)工作频率或周期时间;

  3)输出电压和电流值;

  4)功率开关的最大导通时间;

  5)隔离电位;

  6)所要求的漏感和分布电容值;

  7)工作环境和条件。

  26、单端它激式反激型直流变换器的分析?电路特点?

  答:

  1)当功率开关V1被激励导通时,输入直流电源电压Ui直接加到功率开关变压器T1的初级绕组上,就有电流流过。由于这时功率开关变压器次级绕组的整流二极管VD1反向截止,因此没有电流通过。初级绕组耦合到次级绕组的能量将以磁能的的形式被储存到次级绕组中。当功率开关截止时,功率开关变压器所感应的电压与输入电压正好反向,使VD1正向导通,储存的磁能将以电能的形式释放给负载电路,因此这种形式的直流变换器电路的输出是倒向型的。它的输出电压不仅与初、次级绕组的匝数比有关,还和占空比即V1的导通时间有关。

  2)特点

  功率开关截止时,功率开关变压器向负载端释放能量;

  功率开关变压器既起安全隔离的作用,又起储能电感的作用;

  变压器要工作在连续工作状态,功率开关变压器必须大于临界电感值;

  输出端不能开路,否则将失控;

  可用于有几百瓦输出功率的场合。

  28、自激推挽直流电路功率开关考虑的主要参数?

  答:

  1)最大集—射极电压Uceo;

  2)最大集电极电流Icm;

  3)在最大负载电流是时最小的放大倍数βmin;

  4)开关速度,主要包括集电极电流的上升时间Tr、下降时间Tf和储存时间Ts;

  5)最大功率损耗Pcm或结—壳的热阻;

  6)集电极电压二次击穿额定值Uceo。

  29、自激推挽双变压器直流电路工作原理?

  答:自激推挽双变压器直流变换器电路采用一个体积小的工作在饱和状态和驱动变压器来控制功率开关工作状态的转化,而使用一个体积较大的工作在线性状态的变压器来控制电压的变换和功率的传输。

  在接通电源后,由于电路总是存在着不平衡,设功率开关V1先导通,它的集电极电压就会降低。

  当接近输入直流电源电压Ui时,输出功率开关变压器T2的NP1两端就会产生电压,NP2的两端也会相应的产生感应电压。NP1和NP2所产生的电压值之和全部加到T1的初级绕组和反馈电阻R1组成的串联电路两端,T1的次级绕组Nb2所产生的电压把V2的基集置成反向截止状态。Nb1所产生的电压把V1的基集置成正向饱和导通状态。T1的磁化电流增加,会导致T1的饱和,则N1中的电流增加,反馈电阻Rf两端电压增加,这样绕组N1上的电压就会减少,于是T1次级功率开关的激励电压也相应的减小。

  于是,V1的集电极电流减小,逐渐退出饱和区,因此,所有的绕组的感应电压全部反向,V2开始导通,V1截止。V2的饱和状态将一直维持到T1的磁通达到负饱和值为止,这时,V1和V2的工作状态又发生翻转,使V2截止,V导通。如此反复。

  30、桥式直流电路的分类?特点?

  答:分为半桥式直流电路和全桥式直流电路。

  1)输出功率大;

  2)功率开关变压器磁芯利用率;

  3)功率开关变压器没有中心抽头,实际加工较为简单。

  4)电路中所用功率开关几点己所能承受的耐压是推挽式直流电路中功率开关的两倍,因此,选用功率开关时集电极的额定电压值就为推挽式直流变换器电路的功率开关的1\2;这样在相同的成本和输入条件下,半桥式直流变换器的输出功率就为推挽式直流变换器的两倍,全桥式直流变换器的四倍;

  5)在半桥式直流变换器电路中,功率开关变压器初级绕组上所施加的电压幅值只有输入电压的一半,与推挽式直流变换器电路相比,输出相同的功率时,功率开关和功率开关变压器的初级绕组上必须流过两倍的电流,因此,桥式直流变换器电路是采用降压扩流的方法来实现相同功率的输出的。


("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
开关电源的额定功率、峰值功率和过载能力有什么区别?对电机等负载启动有什么意义
  开关电源是广泛应用于各种电子设备中的电源供应装置,其性能参数包括额定功率、峰值功率和过载能力等。本文将探讨开关电源的额定功率、峰值功率和过载能力的区别,以及它们在电机等负载启动中的意义。  1. 开关电源的额定功率、峰值功率和过载能力  1.1 额定功率  定义:开关电源的额定功率是指其设计和规格所标明的持续输出功率。这是设备可以长时间持续工作的最大功率水平。  意义:额定功率反映了开关电源的稳定性和可靠性,用于保证设备正常运行时的能量供给需求。超过额定功率可能导致电源过热、损坏设备或引起其他安全问题。  1.2 峰值功率  定义:开关电源的峰值功率是指瞬时输出功率的峰值。通常是开机瞬间或负载发生突变时,电源可以提供的额外功率。  意义:峰值功率用于应对瞬时负载或启动时的高功率需求,确保系统在短时间内正常运行而不受到功率波动的影响。  1.3 过载能力  定义:开关电源的过载能力是指其承受负荷超负荷运行的能力。即使超出额定功率,电源也能在一定程度上维持输出并保护自身免受损坏。  意义:过载能力决定了开关电源对临时或偶然的过载情况的抵抗能力,帮助设备应对负载波动或故障情况,从而提高系统的可靠性和稳定性。  2. 对电机等负载启动的意义  2.1 启动需求  高初载荷:启动电机等重负载时,会产生较高的启动电流需求,需要电源提供足够的峰值功率来支撑瞬时功率需求。  稳态运行:一旦负载启动成功,电机需要稳定的额定功率供应以保证正常运转和工作效率。  2.2 开关电源性能要求  峰值功率需求:开关电源必须具备一定的峰值功率能力以满足电机等负载启动时的高负荷需求,确保启动成功并避免因功率不足而引发问题。  过载能力:对于电机等负载来说,有时会出现临时的过载情况,此时开关电源的过载能力能够提供额外支持,保护电机不受过载损害。  3. 应用领域和实际意义  3.1 工业自动化  应用场景:在工业自动化领域,开关电源的额定功率、峰值功率和过载能力很重要。工业设备如机械臂、输送带等在启动时可能需要较大的峰值功率支持,而在运行过程中又需要稳定的额定功率输出。  实际意义:通过合理选择具备足够峰值功率和过载能力的开关电源,可以确保工业设备在启动、正常运行和应对临时负载波动时表现出色,提高生产效率和设备可靠性。  3.2 航空航天领域  应用场景:在航空航天领域,飞行器的各种系统如通信、导航、雷达等需要可靠的电源供应。启动发动机、控制飞行器飞行过程中的电子设备,都需要考虑开关电源的性能参数。  实际意义:对于航空航天设备来说,开关电源的过载能力尤为重要,在面临恶劣环境和高负荷情况下能够提供稳定的电源输出,确保设备安全运行和飞行器的正常功能。  3.3 汽车电子系统  应用场景:在汽车电子系统中,包括发动机控制单元、车载娱乐系统、传感器等多个电子模块,这些模块对于开关电源的效能有着不同的要求。  实际意义:对于汽车电子系统来说,开关电源的稳定性和功率输出特性关系到整个车辆的性能和安全性。合适的开关电源设计可以确保车辆各个部件的正常运行,提高驾驶体验和安全性。
2026-02-06 11:58 reading:198
开关电源中特殊元件的类型和用途
  开关电源中特殊元件的类型和用途:  一、特种二极管:  1)快恢复二极管(FRD):反向恢复时间一般为几百纳秒,正向压降为0.6V~1V,正向电流为几安培至几千安培,反向峰值电压可达几百伏特至几千伏特。可用作开关电源中的输出整流管、一次侧钳位保护电路的阻塞二极管。  2)超快恢复二极管(SRD):在快恢复二极管基础上发展而成,其反向恢复电荷进一步减小,反向恢复时间可低至几十纳秒。可用作开关电源适配器输出整流管、阻塞二极管、反馈电路中的整流管。  3)肖特基二极管(SBD):全称为肖特基势垒二极管,它属于低电压、低功耗、大电流、超高速半导体功率器件。其反向恢复时间可小到几纳秒,正向导通压降仅为0.4V左右,整流电流可达几十至几百安培。特别适合做开关电源充电器低压输出电路中的整流二极管、续流二极管。  4)瞬态电压抑制二极管(TVS):亦称瞬态电压抑制器,其响应速度极快、钳位电压稳定,是一种新型过电压保护器件。可用来保护开关电源PWM集成电路、MOS功率器件以及其他对电压敏感的半导体器件。  5)双向触发二极管(DIAC):亦称二端交流器件,常与晶闸管配套使用,构成开关电源变压器输出过电压保护电路。  二、特种电阻器:  1)熔断电阻器(FR):亦称保险电阻器或可熔断电阻器,它兼有电阻器和熔断器的功能,熔断电流从几十毫安到几十安培,熔断时间为几秒至几十秒。  2)自恢复熔丝管(RF):亦称自恢复保险丝,具有可自动复原的性能,可反复使用,不需要维修更换。  3)软启动电阻:属于负温度系数热敏电阻(NTCR),其特点是标称阻值低(仅为1Ω~47Ω)、额定功率高(10~500W)、工作电流大(1~10A),适合作开关电源适配器的启动保护元件。  4)压敏电阻器(VSR):工作电压范围宽(6V~3000V,分若干档),对过电压脉冲响应速度快(几纳秒至几十纳秒),耐冲击电流的能力很强(可达100A~20Ka),漏电流小(低于几微安至几十微安),电阻温度系数低(小于0.05%/℃),价格低廉。可构成开关电源适配器的过电压保护电路、防雷击保护电路、消除火花电路、浪涌电压吸收回路等。  5)数字电位器(DCP):与可调式开关稳压器配套使用,构成可编程开关稳压器。  三、晶闸管:  1)单向晶闸管(SCR):与双向触发二极管配套使用,构成开关电源适配器的电压保护电路。  2)双向晶闸管(TRIAC):可构成开关电源交流输入侧的过电压保护电路。  四、其他  1)光耦合器:线性光耦合器的电流传输比(CTR)与直流输入电流(If)的特性曲线具有良好的线性度。在传输小信号时,能使输出与输入呈线性关系,适合构成精密开关电源中的光耦反馈电路,并实现二次侧与一次侧的隔离。  2)滤波器:亦称EMI滤波器,它属于双向射频滤波器。一方面能滤除从交流线引入的外部电磁干扰;另一方面还可避免开关电源适配器向外部发出噪声干扰,能显著提高开关电源适配器的抗干扰能力,并使开关电源符合电磁兼容性(EMC)标准。  3)可调式精密并联稳压器:例如XX431,可广泛用于精密开关电源适配器、充电器中,还能构成电压比较器、电源电压监视器、延时电路、精密恒流源等。  4)磁珠:有管状、片状磁珠及磁珠阵列,能抑制开关电源适配器、充电器的开关噪声和尖峰干扰。
2026-02-03 16:46 reading:266
如何抑制开关电源产生的电磁干扰?常见的EMC/EMI问题和解决方案分享
  开关电源在运行过程中常常会产生电磁干扰(Electromagnetic Interference,EMI),可能对周围的电子设备、通信系统及无线网络造成负面影响。因此,有效抑制开关电源产生的电磁干扰对电子产品设计非常重要。本文将探讨如何抑制开关电源产生的电磁干扰,以及常见的电磁兼容性(Electromagnetic Compatibility,EMC)和电磁干扰(EMI)问题及相应的解决方案。  01抑制开关电源电磁干扰的方法  1.1 滤波器  输入滤波器:在开关电源输入端添加滤波器,可以有效地滤除高频噪声,减少电磁辐射。  输出滤波器:在输出端加入滤波器,可以降低输出端的电磁干扰,保证输出电压的纹波度。  1.2 地线设计  良好接地:确保设备的各个部分有良好的接地,减少地回路导致的辐射和传导干扰。  1.3 屏蔽技术  屏蔽罩:采用金属屏蔽罩覆盖开关电源模块,阻隔电磁波的辐射,减少外界干扰。  1.4 布线设计  合理布线:合理设计信号线和电源线的走向和距离,减少互相干扰。  02常见的EMC/EMI问题与解决方案  2.1 互相干扰  问题:不同电路之间由于电磁耦合引起相互干扰。  解决方案:合理隔离信号线和电源线,避免过近布线;采用屏蔽罩等技术隔离电路。  2.2 辐射干扰  问题:开关电源工作时产生的高频电磁波辐射影响周围设备。  解决方案:添加滤波器、使用屏蔽罩、优化地线设计等方式减少辐射。  2.3 传导干扰  问题:开关电源通过电源线传导干扰到其他设备。  解决方案:优化电源线的布局,增加滤波器,确保接地良好。  2.4 选择合适元件  问题:使用不合适的元件可能导致电磁干扰问题。  解决方案:选择符合EMC标准的元件,如滤波电容、电感等,以降低干扰。  为了验证设备的电磁兼容性,通常需要进行EMC测试并获得认证。主要的EMC测试包括辐射测试和传导测试,以确保设备符合相关的国际或行业标准。  在当今电子产品日益普及的背景下,抑制开关电源产生的电磁干扰显著重重要。有效的EMI抑制不仅可以提高产品的性能和可靠性,还可以避免对周围环境和其他设备造成干扰。通过采取合适的措施,如滤波器、良好的接地设计、屏蔽技术和合理的布线规划,可以有效减少开关电源产生的电磁干扰。
2025-12-29 15:22 reading:414
如何为开关电源(如Buck电路)计算和选择合适的电感、电容
  在电子系统中,开关电源是一种常见的电源转换器,用于将输入电压转换为所需输出电压。在开关电源设计中,合适的电感和电容的选择非常重要。本文将深入探讨如何计算和选择开关电源(如Buck电路)中的电感和电容,以实现良好的性能和稳定性。  1. 什么是Buck电路?  Buck电路是一种常见的降压型开关电源电路,通过调节开关管的通断来实现输入电压向下转换为输出电压。在Buck电路中,电感和电容是关键元件,用于滤波、储能和稳定电压输出。  2. 如何选择合适的电感?  2.1 电感的作用  电感在Buck电路中起着平滑输出电流、储存能量和限制电流波动等重要作用。正确选择电感可以提高转换效率和减小输出波纹电流。  2.2 电感选取方法  计算工作电流范围:根据负载电流和开关频率确定工作电流范围。  计算感应电压:根据电感公式和最大负载电流计算感应电压。  选择合适的电感值:结合电感公式和典型值,选择能够支持所需电流且具备合适感应电压的电感。  3. 如何选择合适的输出电容?  3.1 输出电容的功能  输出电容在Buck电路中用于储存能量、减小输出电压波纹并提供稳定输出电压。  3.2 电容选取方法  计算输出电压波纹:根据负载电流变化和输出电压要求,计算所需的输出电压波纹。  根据电容公式选择:结合输出电压波纹要求和开关频率,选择合适容值的输出电容。  4. 常见问题与解决方案  4.1 输出电压波动大  解决方案:增加输出电容容值或更换更低ESR(等效串联电阻)的电解电容。  4.2 效率低或温升过高  解决方案:重新计算电感值,优化布局,降低开关损耗,或选择功率损耗更小的电感和电容。  在设计Buck电路时,正确计算和选择电感和电容可以帮助提高转换效率、稳定性和输出质量。设计人员需要综合考虑工作条件、输出要求和性能指标,结合理论计算和实际经验,选取适合的电感和电容,以确保开关电源系统的稳定可靠运行。
2025-12-24 11:49 reading:450
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
model brand To snap up
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code