罗姆寻求与东芝深化<span style='color:red'>功率半导体</span>领域业务整合
  日本罗姆半导体集团正在寻求与最近退市的东芝公司合作,在功率半导体方面寻求业务整合。罗姆副总裁Isao Matsumoto在近期财报电话会议上透露,将于6月启动与东芝公司的谈判,落实整合功率半导体业务,预计一年左右的时间才能达成协议。  东芝于2023年12月正式从东京证券交易所退市,以JIP(日本产业合作伙伴)为首的企业财团通过要约收购的方式将东芝私有化。这一过程中罗姆总共投资3000亿日元,为与东芝在功率半导体领域的整合铺平道路。  东芝退市不久之后,罗姆与东芝便宣布相互替代生产的合作方式,罗姆位于日本宫崎县的碳化硅(SiC)新工厂与东芝位于日本石川县的全新硅基功率半导体工厂,相互合作生产功率半导体。  根据这项计划,罗姆投资2892亿日元,东芝计划投资991亿日元,此外日本经济产业省还宣布将提供最多1294亿日元的补贴,以促进功率半导体企业整合。  罗姆积极寻求进一步整合,已向东芝的大股东JIP提出,希望深化整合,几乎涵盖所有运营层面,包括功率半导体研发、生产、销售供应和物流。  罗姆正在加大对功率半导体的投资,目标是在2021财年至2027财年期间,使该领域的复合年均增长率(CAGR)达到24.7%,远远超过整个市场8.1%的数值。值得注意的是,该公司SiC功率半导体的收入份额预计将稳步上升,超过硅基功率半导体。此外,罗姆8英寸晶圆SiC功率半导体生产计划于2025年开始。  业界表示,罗姆的巨额投资使其盈利能力造成压力,该公司折旧费用增加、研发成本增长,使其利润减少300亿日元。  罗姆认为,电动汽车、工业机械等领域,对于功率半导体的中长期需求将大幅增长,因此有必要尽快投入,在该领域建立国际竞争力。
关键词:
发布时间:2024-05-14 13:10 阅读量:262 继续阅读>>
尼得科:MOSFET和IGBT<span style='color:red'>功率半导体</span>介绍
  随着科技的飞速发展,功率半导体器件正日益成为日常生活和工业生产中不可或缺的技术支持。它们不仅广泛应用于手机、电脑等消费电子设备,更深度涉及到汽车、人工智能等多个领域。因此,为了更好地适应市场需求,功率半导体器件的开发和生产正在朝着更高效、更可靠以及更本地化的方向迅猛发展。  其中,MOSFET和IGBT是目前功率半导体产品的主力,让我们一起来了解一下他们的特点吧!  随着MOSFET和IGBT等功率半导体广泛应用,市场需求上升,性能要求增加。尤其在车规级别,对安全性能要求更高。因此,在功率半导体投入使用前,对其进行专业参数测试至关重要。为此,尼得科精密检测科技株式会社(尼得科集团旗下子公司)推出两款新型功率半导体检测装置。  特征1:  通过各检测工作台相连接的方式实现高达 144UPH(25 秒/Unit)的工作量。  特征2:  一键式装卸的结构以及通用型治具的采用,大幅度降低了对应不同品类的治具的安装时间以及治具成本。  特征3:  实现行业高水平的低Ls 4.5nH,可进行高精度检测提案。  除了实现自动检测的NATS-1000,还有手动款NATS-1630/1730可以选择,其在NATS系列的高精度&高速度检测基础上,操作更加简单,可选择手动/在线/加载和卸载配置,客制化检测路径!  尼得科精密检测科技株式会社的功率半导体检测装置在2023年亮相于PCIM展会,在展会上引起了各行业客户的关注与认可。  今后,为响应碳中和的愿景,准确把握新能源发展市场的脉搏,尼得科精密检测科技株式会社将持续深耕电气和电子相关行业领域,不断进行技术研究和实践,致力于为半导体行业提供专业的检测检查技术,为推动更安全、更高效的社会做出积极贡献。
关键词:
发布时间:2024-02-20 09:28 阅读量:1449 继续阅读>>
日本<span style='color:red'>功率半导体</span>的焦虑
  功率半导体用于包括电动汽车、家用电器、太阳能电池板和数据中心等所有类型的设备中以控制电力。预计全球需求将会增加。  具体到日本厂商在这一领域,市场份额排名全球第7的东芝和排名全球第9的罗姆已宣布合作生产,(日本)经济产业省还将提供高达资本投资1294亿日元。当我们就合作的背景采访他们时,我们发现,参与其中的人对于日本企业是否能够在世界上生存存在着强烈的危机感。  由于向电动汽车的转变和工业设备数字化的进步,对功率半导体的需求正在增加。据研究公司Fuji Keizai称,全球市场规模预计将从2022年的26,827亿日元增长到2035年的134,302亿日元,增长五倍。  由于预计需求增加,日本制造商正在增加产量。  大型半导体公司瑞萨电子已向山梨县一家曾经关闭的工厂投资了 900 亿日元,并计划于 2024 年重新启动。此外,三菱电机还计划在熊本县建设一座新工厂生产功率半导体,并升级现有工厂的设施,总投资约1000亿日元。  上月,东芝和罗姆宣布利用两家公司的工厂进行联合生产。当中,罗姆将管理资源集中在SiC功率半导体上,而东芝将管理资源集中于Si(传统)功率半导体,罗姆子公司将在德国和日本生产SiC晶圆。合作的关键是共享各公司擅长的产品生产,以增强竞争力。  当东芝将管理资源集中于使用传统Si(硅)生产功率半导体时,罗姆则专注于生产使用SiC(碳化硅)的产品,总业务价值将攀升至3883亿日元。尽管使用SiC的半导体的制造成本高于硅产品,但由于其优异的节能性能,作为旨在实现脱碳的下一代半导体,特别是在电动汽车中的应用的期望正在不断提高。  罗姆在SiC功率半导体的研发方面具有优势,而东芝则通过多年来向铁路和汽车等领域提供传统功率半导体来积累专业知识。一家半导体相关公司的高管对两家公司的合作表示了很高的期望。  “虽然是一小步,但我们终于迈出了一步。如果我们能在日本建立一家强大的半导体制造商,那么材料和设备的开发就会更容易,这也将有利于半导体行业。”经济产业省也将为此次合作提供高达1294亿日元的巨额补贴。政府的目标是加强半导体行业的竞争力,这对于经济安全变得越来越重要。  在中美关系紧张以及新冠疫情导致半导体短缺的背景下,各国都在注重加强供应链,该公司寻求利用SiC功率半导体领域。  不过,这种方法并不寻常,因为满足补贴支付要求所需的最低资本投资额为2000亿日元。这在功率半导体领域是前所未有的水平,对于单个公司来说是一个沉重的负担。  他们故意设定这样的金额作为条件,希望能够鼓励企业之间的合作和重组。当今年一月开始申请补贴时,一位行业官员似乎感到惊讶。他认为,“这体现了经济产业省围绕 SiC 重组功率半导体产业的强烈意愿。  ”不过,投资能力仅限于一定程度的全球市场份额。  事实上,日本在这一领域具有一定的竞争力,市场份额超过20%。然而,从各公司的市场份额和海外销售比例来看,问题就显而易见了。  而一些外国企业的市场份额为10%,其中包括通过多次收购扩大规模的全球最大公司英飞凌科技(德国),其市场份额为21%,而日本企业的市场份额仅为5%多一点,即使三菱电机排名第四,合作伙伴东芝和罗姆也仍保持在较低的个位数。  此外,各公司的销售都偏向日本,未能在海外市场占领市场份额。此外,在电动汽车需求预计将增长的SiC功率半导体领域,罗姆排名全球第五,市场份额略高于6%。它以被特斯拉采用后市场份额不断增加而闻名,与排名前列的意法半导体(瑞士)等海外厂商的差距一目了然。熟悉半导体行业的专家指出日本制造商面临的挑战如下。  南川高级咨询总监指出:“他们在日本很强,但在世界其他地方并不是很强。由于每个公司都规模较小,他们没有能力向海外扩张。日本的功率半导体制造商相对较弱。我们曾经有一个强势地位,但我们不能再这么说了。”  同时,随着电动汽车的转变,中国在功率半导体领域正在迅速追赶。比亚迪是全球第二大电动汽车制造商,拥有一家设计和开发自用半导体的子公司,同时也从事开发和制造。  此外,德国英飞凌科技公司透露,其采购的SiC晶圆的6家公司中有2家是中国公司,并且正在迅速提高其产能。  中美之间的半导体冲突也产生了意想不到的影响。在生成人工智能和智能手机等领域使用的“先进半导体”方面,美国对向中国出口制造设备实施了严格的监管。  另一方面,与这些“先进”器件相比,功率半导体被称为“传统(老一代)”,其制造设备不受法规约束。  原本中国希望斥巨资推动半导体产业发展,但由于出口限制,原本用于尖端半导体的资金大部分被转用于功率半导体。相信涉及的企业很多,并且相关企业持续快速成长。这种情况可以被描述为“出口限制的副作用”。  日本厂商该如何克服这种局面呢?有人认为,日本企业应该采取更深入的措施,不仅包括合作,还包括企业重组,但一些业内人士表示,这并不那么容易。  在功率半导体的生产过程中,每家公司在管理设备温度和运行时间等方面都有自己独特的技术和诀窍。虽然这是竞争力的源泉,但它也成为工程师的症结所在以及公司之间合作的障碍。  一家半导体制造商的消息人士表示:“如果事情继续这样发展下去,我们将在未来遭遇失败,因为我们将无法在规模和成本方面与海外制造商竞争。我们理解这一点,但感觉管理层的危机并没有与工程师和人们分享。“每个人都有不同的想法。需要时间来弄清楚如何接受它。”  另一方面,专家指出,即使行业不必重组,但每个公司都可以做一些事情。  南川高级咨询总监举例说:“例如,日本制造商在数字营销方面不如海外制造商。虽然他们的个体市场可能很小,但总体上拥有大量客户,但由于数字化的滞后,他们无法应对。企业应该明确区分他们竞争的领域和不竞争的领域,并尽可能地合作。  基于此,我们将强调管理层在促进企业间协作方面所发挥的作用的重要性。  “日本制造商有很多对各自技术感到自豪的工程师。决定采用哪种技术是一个艰难的决定,但我认为高层管理人员应该做出重大决定。而且,仅仅做出决定是不够的;还需要做出决定。”设定目标很重要。很重要。然后你自然就会知道该使用哪种技术。”南川高级咨询总监  接着指出。  那么,日本日本功率半导体制造商会怎么做?  SiC晶圆半导体产业依赖于使用SiC晶圆的家电、汽车等终端产品。然而,随着日本企业的存在感下降,包括在家电领域被韩国制造商超越,半导体行业也逐渐失去了市场份额。现在,中国正乘着电动汽车转型的顺风而崛起。  这种情况不仅仅是功率半导体特有的问题,而且似乎也是日本制造业面临的严酷现实的一个缩影。
关键词:
发布时间:2024-01-08 14:15 阅读量:1436 继续阅读>>
东芝披露短期目标 扩大<span style='color:red'>功率半导体</span>产能
  作为全球功率半导体龙头企业,东芝致力于电动汽车、工业机器人、火车、电站等行业应用的半导体研发制造。东芝CEO近期表示,由于电动汽车需求增长,电源管理芯片将成为直接驱动利润复苏的因素。  东芝CEO Taro Shimada表示,“短期内,扩大功率半导体的销量是东芝首要目标。我们希望尽快扩大功率半导体的产能。”  在此之前,东芝宣布将与芯片制造商罗姆(ROHM)合作生产功率半导体,此举旨在扩大规模并增强竞争力。这是罗姆参与以140亿美元收购东芝以来的首次合作。  东芝计划斥资1250亿日元(约合1.7557亿美元)将功率芯片产量提高一倍以上,旨在赶上英飞凌等功率芯片巨头。  Taro Shimada表示:“我们将对日本和海外的增长领域和潜在利润进行最佳资源配置。”该公司的目标是迅速实现10%或更高的销售回报率。  当被问及重组和出售未盈利业务的可能性时,Taro Shimada表示尚未做出任何决定。他还拒绝就可能重新上市的时间框架置评,称这将由JIP决定。  据悉,功率半导体是电力电子设备实现电力转换和电路控制的核心元器件,主要用来对电力进行转换、控制,用于改变电子装置中的电压和频率、直流交流转换等,涉及电动汽车的驱动效率、充电速度以及续航里程等多方面性能,是电动汽车三电系统的核心部件。
关键词:
发布时间:2023-12-27 15:16 阅读量:1272 继续阅读>>
村田:使用SiC/GaN<span style='color:red'>功率半导体</span>,提高功率转换效率,无源元件的技术进步很重要!
  世界各国政府以及各行各业的企业正在共同努力,推进迈向碳中和的举措。人们正在从能够想到的多个角度实施脱碳措施,例如使用太阳能发电等可再生能源,让迄今为止燃烧化石燃料的设备实现电气化,降低家用电器、IT设备和工业电机等现有设备的功耗等等。随着越来越多的脱碳举措得到实施,有一个半导体领域的技术创新正在迅速加速。它就是功率半导体。  各个国家和地区已经开始将碳定价机制作为制度引入,以将与业务活动相关的温室气体排放转嫁到成本。因此,脱碳举措不仅具有为社会做贡献的重要意义,而且会对企业经营的成绩单——财务报表也会产生明显的数字影响。  脱碳举措对电子行业产生深远的影响,催生出势不可挡的新一轮半导体技术更替和成长,特别是在功率半导体领域,以碳化硅(SiC)和氮化镓(GaN)等宽禁带材料替代传统硅基器件。  人类为了能在未来减少温室气体排放,时隔半个世纪,半导体材料正面临全面变革!  进一步降低功耗,硅基器件遭遇瓶颈  功率半导体是起到对电气和电子设备运行所需的电力进行管理、控制和转换作用的半导体元件。它被嵌入功率电子电路当中,这些电路包括为家用电器和IT设备稳定提供驱动电力的电源电路、无浪费地传输和分配电力的电力转换电路以及通过可自由控制的扭矩和转速高效率地驱动电机的电路等。  功率半导体有MOSFET、IGBT、二极管等各种元件结构,根据用途分别使用。其中,  MOSFET(Metal Oxide Semiconductor Field Effect Transistor)  即金属氧化物半导体场效应晶体管是一种起到电气开关作用的场效应晶体管。它由3层组成:金属、氧化物和半导体,通过向称为栅极的电极施加电压来进行打开和关闭电流的动作。  IGBT(Insulated Gate Bipolar Transistor)  即绝缘栅双极晶体管,是具有将MOSFET和双极晶体管组合后的结构的晶体管。其特点是同时具有MOSFET的高速动作和双极晶体管的高耐电压、低导通电阻的特点。  尽管结构不同,半个多世纪以来一直使用硅(Si)作为元件材料。这是因为Si具有良好的电气特性,同时具有易于加工成多种元件结构的特性。  然而,目前Si基功率半导体已无法满足进一步降低多种电气和电子设备功耗所需的高水平技术要求。为了克服这一瓶颈况,比Si更适合作为功率半导体材料的碳化硅(SiC)和氮化镓(GaN)等新材料的使用范围正在不断扩大。  SiC和GaN在击穿电场强度(影响耐电压)、迁移率(影响动作速度)和热导率(影响可靠性)等多个物理特性上具有适合功率半导体的特点。如果能够开发出发挥其出众特性的器件,就能制造出具有更高性能的功率半导体。  今天,基于SiC的MOSFET和二极管已经实现了产品化,并已用于电动汽车电机驱动逆变器和太阳能发电功率调节器中的DC/AC转换器等。  基于GaN的HEMT(High Electron Mobility Transistor)也已实现产品化。HEMT是一种高电子迁移率的场效应晶体管,能通过连接不同性质的半导体并诱导高迁移率电子来实现高速开关。目前,氮化镓HEMT已用于超小型PC的AC转换器和智能手机充电器等。  然而,要充分发挥出SiC/GaN的潜力,离不开电容器和电感器等无源元件的同步发展。  发挥SiC/GaN潜力,无源元件不可或缺  仅通过单纯地替换现有电力电子电路中的Si基元件无法充分发挥基于新材料制造的功率半导体的潜力。这是因为组成电力电子电路的其他半导体IC、无源元件甚至控制软件都是在以使用Si基功率半导体为前提的情况下开发和选择的。为了有效利用基于新材料的功率半导体,这些周边元件也需要重新开发和重新选择。  例如,在采用了为降低数据中心服务器的功耗而引进的GaN HEMT的AC/DC 转换器电路中,使用了多个GaN HEMT(上图)。  利用GaN HEMT可以在高电压时进行高速开关的特性,可以提高功率电子电路的开关频率(动作频率)。在动作频率较高的电路中,电路中内置的电容器和电抗器信号处理电路中的电感器的电抗值可以很小。一般来说,低电抗元件的尺寸较小,因此可以让电路板更小并提高功率密度。同样,在驱动电动汽车的电机的逆变器电路等当中也可以通过引入SiC MOSFET实现周边元件小型化,进而实现逆变器电路整体的小型化和轻量化。  另一方面,在高电压时进行高速开关的电源会产生高水平的噪声,这可能会对周边设备的动作产生不利影响。采用SiC或GaN功率半导体构建的电源在更高频率下进行开关,所以进一步增加了风险。因此,需要比使用以前的电力电子电路时更加严格的噪声对策。在这种情况下,需要使用设计用于高电压、大电流和高频电路的静噪元件,而不是用于以前的电路的静噪元件。  除此之外,对于在无源元件当中也属于特别笨重的元件的变压器,也需要在更高频率下工作的小型变压器。现在已经开发出了以使用基于SiC和GaN的功率半导体为前提的薄型平面变压器等,并且已经投入市场。  迄今为止,多种类型的半导体(不仅仅是功率半导体)都是使用以Si为基础制成的。因此,许多现有的电子元件都默认是以与Si基半导体组合使用为前提进行开发的。为了充分发挥采用新材料制成的功率半导体的效果,不仅需要在现有元件中寻找更好的元件,而且可能需要开发满足新技术要求的新元件。  一般来说,在Si基功率半导体中,呈现可以应对更高电压和更大电流的元件的动作速度更低的趋势(上图)。因此,能够应对高电压和大电流的小型电容器和电抗器并不齐全。  此外,在能够在高温下稳定工作的SiC基功率半导体当中,有将散热系统简化以减小尺寸和重量并降低成本的趋势。在这些情况下,无源元件在高温环境下也需要确保高可靠性。  在功率半导体领域引入新材料是对半个多世纪以来针对Si材料进行优化的电气电子生态系统进行根本性变革的重大动向。针对新材料进行优化的周边电子元件的进步也非常值得关注。
关键词:
发布时间:2023-12-06 16:22 阅读量:1758 继续阅读>>
东芝建设新设施以扩大<span style='color:red'>功率半导体</span>产能
罗姆将在年内量产碳化硅<span style='color:red'>功率半导体</span>
英飞凌在匈牙利开设新厂扩充大<span style='color:red'>功率半导体</span>模块的产能
  英飞凌科技股份公司在匈牙利采格莱德开设了一家新工厂,用于大功率半导体模块的组装和测试,以推动作为全球碳减排关键的汽车电动化进程。此外,英飞凌还进一步扩大了投资,提高大功率半导体模块的产能,广泛用于风力发电机、太阳能模块以及高能效电机驱动等应用,推动绿色能源的发展。  英飞凌科技首席运营官Rutger Wijburg表示:“英飞凌遵循的是长期可持续增长的发展道路。在低碳化和数字化趋势的推动下,英飞凌半导体解决方案的市场需求不断增长。采格莱德工厂为推动绿色能源的发展作出了重要贡献,新工厂的建设将进一步助力英飞凌满足日益增长的电动汽车应用需求。      英飞凌很早就开始投资,促进电动汽车的未来发展,现已成为推动绿色能源转型的关键半导体厂商。” 电动汽车的发展趋势是毋庸置疑的。根据分析师的预测,到2027年,全电动或混合动力汽车将占汽车总产量的50%以上。  现如今英飞凌为新工厂追加了1亿欧元的投资,并得到了匈牙利政府的支持。英飞凌科技采格莱德工厂执行董事Tamás Szabó表示:“英飞凌在匈牙利的发展已有25年的历史,我们依靠当地高可靠性工业基础设施来生产和制造创新的半导体产品。多年来,英飞凌在电源模块领域获得了良好的声誉并服务于世界各地的客户。”  英飞凌在功率半导体领域稳居全球第一,长期致力于推动可再生能源的发展以及绿色电力的高效存储和使用。  作为全球汽车半导体市场的领导者,英飞凌也是推动电动汽车发展的先行者。2021年生产的电动或混合动力汽车,几乎每两辆中就有一辆在逆变器中使用了英飞凌的半导体器件。  英飞凌会在采格莱德扩招275名员工,当新工厂满员满产时,总员工数将达到约1600人。该工厂已于2022年2月开始扩充产能。
关键词:
发布时间:2022-10-17 14:43 阅读量:2371 继续阅读>>
可同时验证<span style='color:red'>功率半导体</span>和驱动IC的免费在线仿真工具 “ROHM Solution Simulator”新增热分析功能
    全球知名半导体制造商ROHM面向汽车和工业设备等电子电路设计者和系统设计者,在ROHM官网上公开了一款在线仿真工具“ROHM Solution Simulator”,利用该仿真工具可以在电路解决方案上一并验证功率元器件(功率半导体)和驱动IC等,此次又在该工具中新增了热分析功能。    “ROHM Solution Simulator”是在ROHM官网上提供的一款免费电子电路仿真工具,可支持广泛的仿真应用,包括从元器件选型和元器件单独验证到系统级的运行验证。利用该工具,可以通过接近用户实际环境的电路解决方案,轻松且高精度地对ROHM提供的SiC元器件等功率半导体、驱动和电源等应用领域的各种IC、以及分流电阻器等无源器件进行一并验证,从而可大大缩减用户的应用开发工时,因此得到了用户的高度好评。    此次新增的热分析功能,安装在容易发生热问题的应用或设备的电路解决方案中,适用于搭载了IGBT和分流电阻器的PTC电加热器(无内燃机的电动汽车专用加热器)、DC/DC转换器IC和LED驱动器IC等的电子电路设计。在功率半导体和IC以及无源器件相结合的电路解决方案中,增加业内先进的能够在线进行热电耦合分析的功能*1。利用该功能不仅可以对应用运行时的半导体芯片温度(结温)进行仿真,还可以对引脚温度和电路板上元器件的热干扰进行仿真,以往需要一天才能完成的热分析仿真工作,如今10分钟以内即可完成。以往,设备各部分的温度需要在产品试制后通过实测进行确认,现在,在产品试制前即可快速且简便地进行确认,因此,该功能非常有助于减少试制后的返工,减少存在热问题的应用产品的开发工时。    未来,ROHM将以新开发的SiC元器件为中心,继续在支持“ROHM Solution Simulator”的更多电路解决方案中添加热分析功能,为进一步减少应用产品的开发工时和预防问题的发生贡献力量。    <背景>    不仅在汽车和工业设备领域,几乎在所有的应用开发过程中,都会充分利用仿真来减少开发工时。在电子电路板的设计过程中也是一样,仿真可以减少部件选型所需的时间和精力,在实机验证之前明确问题所在,从而可以显著减少电路板试制和评估相关的工时。    ROHM面向汽车和工业设备领域,致力于开发能够更大程度地发挥出提供大功率的功率半导体和驱动功率半导体的IC性能的应用电路,并提供相应的支持,在2020年发布了能够一并验证功率半导体和IC等产品的“ROHM Solution Simulator”。该工具不仅是免费的,而且精度高且易用,受到用户广泛好评。很多用户希望在对电路工作进行仿真的同时能够进行温度仿真,为了满足该需求,此次新增了热分析功能。    <热分析功能概述>    电子电路板有多个影响散热性能的参数(层数、面积等)。“ROHM Solution Simulator”的热分析功能,是使用热流体分析工具对从实际电路板计算出的散热相关参数进行3D建模,并将三维数据降维为一维,以便可以通过电路仿真工具进行热分析,从而进行电和热的耦合分析。利用该功能不仅可以对应用运行时会发生变化的半导体芯片温度(结温)进行仿真,还可以对引脚温度和电路板上的元器件和模块内芯片的热干扰进行仿真,以往需要一天才能完成的热分析仿真工作,如今10分钟以内即可完成(不到以往所需时间的1/100)。    此次,作为第一波,在搭载了IGBT和分流电阻器的PTC电加热器(无内燃机的电动汽车专用加热器)、DC/DC转换器IC“BD9G500EFJ-LA”和LED驱动器IC“BD18337EFV-M”、“BD18347EFV-M”等的仿真电路中新增的热分析功能。对于在设计电路时容易产生热问题的应用和设备来说,可以在产品试制前通过仿真快速确认设备各部分的温度,从而有助于减少应用的开发工时。    ●使用热分析功能可完成的工作(详情)    <ROHM Solution Simulator的特点>    “ROHM Solution Simulator”是一款业内难得的可以一并验证功率半导体、IC和无源器件的免费在线仿真工具。该仿真工具具有以下特点,可以减少电子电路设计者和系统设计者的应用开发工时。    1. 可通过接近应用环境的电路解决方案,同时验证功率半导体和IC    利用“ROHM Solution Simulator”,可以通过接近实际应用环境的电路解决方案,轻松且高精度地对ROHM的SiC元器件和IGBT等功率半导体、驱动IC和电源IC等各种IC、分流电阻器等无源器件进行验证。可以对包括外围电路在内的、单个元器件无法确认的特性进行仿真。    2. 仿真数据可以植入到用户自己的开发环境    “ROHM Solution Simulator”采用Siemens EDA推出的仿真平台“PartQuest?”开发而成,该公司是电子设计自动化软件行业的巨头,在汽车行业和工业设备行业拥有骄人的业绩。现有的PartQuest用户或新注册PartQuest账户的用户可以将“ROHM Solution Simulator”中执行的仿真数据导入自己的PartQuest环境(工作区),在更接近实际使用的系统电路上进行验证,也能够自定义验证。
关键词:
发布时间:2022-10-17 10:54 阅读量:2308 继续阅读>>
罗姆社长:中国<span style='color:red'>功率半导体</span>追赶速度惊人
    用于控制电力的「功率半导体」左右着纯电动汽车(EV)的节能性能。在半导体行业,日本企业的存在感正在减弱,但在功率半导体领域,日本企业则拥有30%的全球份额。日本经济新闻就应对激烈竞争的对策采访了世界半导体大企业罗姆 (ROHM) 的社长松本功。    记者:日本企业正在功率半导体领域拼尽全力。    松本功:用于运算等的半导体的微细加工技术已经实现了一定程度的商品化。但另一方面,功率半导体的材料开发则需要大量化学等方面的知识经验。在减少电阻的新材料开发竞争方面,日本企业处于领先地位。从作为原材料的晶圆到用于最终产品的电源外围设备,我们公司都有涉及。我们正通过一贯制生产来实现质量管理和稳定供应。    记者:增产和研发方面的竞争状况如何?    松本功:自2021年起,脱碳风潮兴起,汽车纯电动化的趋势提前了两年。与使用硅材料的产品相比,使用电力损耗大幅减少的新一代材料「碳化硅(SiC)」的功率半导体的需求增加。以美欧厂商为中心,展开了投资竞争。    中国正在举全国之力推进这方面的开发,其追赶速度惊人。(中国)在各地建立了使用生产效率高的大口径晶圆的工厂。我们公司从20多年前就开始与京都大学等合作研究碳化硅材料,积累了相关技术,但如果不能继续走在前面的话,形势就会被逆转。    记者:通过什么来分出胜负?    松本功:在迅速扩大的市场上,作为知名度源泉的市占率非常重要。汽车制造商在新车上市几年之前就开始筛选半导体。需要瞄准未来5年提前建立供应体制。我们公司最早将于2022年内在福冈县启用新厂房大楼进行生产,目标是到2025财年(截至2026年3月)在碳化硅功率半导体领域获得3成世界份额。    记者:如何克服中美半导体主导权之争带来的困难?    松本功:加工晶圆的半导体前制程离不开美国生产的加工设备。如果今后中美对立进一步加剧,连日本企业使用美国的设备生产出来的半导体都无法向中国出口的话,将会出现负面影响。我们公司正在开拓工业机械用半导体需求旺盛的欧洲市场等。    记者:日本半导体产业能否卷土重来?    松本功:中国大陆和台湾通过政策培养了半导体工程师,相关人数迅速增加。日本的半导体产业在1990年代以后急剧衰退,对学生来说,半导体行业的就业吸引力下降。现在以相关工厂越来越多的九州为中心,人才争夺十分激烈。日本需要从人才培养做起,重新审视半导体产业。    日本功率半导体,疯狂扩产    日本瑞萨今日宣布,将对其位于甲府的甲府工厂进行价值 900 亿日元的投资。他们指出,虽然工厂于 2014 年 10 月关闭,但瑞萨电子计划在 2024 年重新开放该工厂,作为能够制造IGBT和功率MOSFET的300 毫米功率半导体晶圆厂。    瑞萨表示,随着碳中和势头的增长,预计全球对供应和管理电力的高效功率半导体的需求将在全球范围内急剧增加。瑞萨特别预计电动汽车 (EV) 的需求将快速增长,因此计划提高其 IGBT 等功率半导体的产能,为脱碳做出贡献。一旦甲府工厂实现量产,瑞萨功率半导体的总产能将翻一番。    瑞萨电子的全资子公司瑞萨半导体制造有限公司的甲府工厂此前经营 150mm 和 200mm 晶圆制造线。为了提高产能,瑞萨决定利用工厂的剩余建筑,将其恢复为专用于功率半导体的 300 毫米晶圆厂。    瑞萨电子总裁兼首席执行官 Hidetoshi Shibata 表示:“可持续发展是我们的核心,以‘让我们的生活更轻松’为宗旨,我们希望建立一个可持续的未来,我们的半导体技术和解决方案有助于让我们的生活更轻松。” “这项投资使我们能够拥有最大的专用于功率半导体的晶圆制造线,这是实现脱碳的关键。我们将继续进行必要的投资,以提高我们的内部生产能力,同时进一步加强与外包合作伙伴的联系。为应对中长期需求增长,瑞萨电子仍致力于确保供应安全,为我们的客户提供最佳支持。”    东芝扩产SiC和GaN,大幅提升功率半导体    今年年初,东芝子公司表示,将在 4 月开始的新财年增加资本支出,以在需求旺盛的情况下扩大其主要生产基地的功率半导体器件的产能。    东芝电子器件与存储设备已为 2022 财年指定投资 1000 亿日元(8.39 亿美元),比 2021 财年 690 亿日元的估计高出约 45%。    这笔资金将资助在石川县的生产子公司加贺东芝电子的场地建设一个新的制造设施,该设施计划于 2023 年春季开始。它还将包括在现有结构内安装一条新的生产线。此次升级预计将使东芝的功率半导体产能提高约 150%。    功率器件用于电子设备中的电力供应和控制,有助于减少能量损失。随着向碳中和社会的努力加速和车辆电动化,需求正在增加。    产能扩张将不仅涵盖由硅片制成的功率器件,还包括以碳化硅和氮化镓为晶圆的下一代芯片。    东芝还将扩大对另一个主要产品类别硬盘的投资。它已开发出将存储容量提高到超过 30 TB 的技术,或比当前可用水平高出 70% 以上,并致力于早期商业化。    东芝电子器件和存储公司正在设想数据中心和电源设备的硬盘驱动器的增长,并正在紧急加大在这两个领域的投资。为了加强其重点,该部门在 2020 财年重组了其业务,结束了系统芯片业务的新发展。    东芝已在截至 2025 财年的五年内为设备业务指定投资 2900 亿日元,而上一个五年期间为 1500 亿日元。该集团在当前五年任期的前两年使用了约 60% 的预算,如有必要,将考虑投入更多资金。    该集团已公布计划拆分为三个针对基础设施、设备和半导体存储器的公司。但大股东对此表示反对,分拆能否实现尚不确定。    三菱电机:1300亿投向功率半导体,谋划8英寸SiC    三菱电机于 2021 年 11 月 9 日举行了功率器件业务的业务说明会,并宣布将在未来五年内向功率半导体业务投资 1300 亿日元,直至 2025 年。该公司计划在福山工厂(广岛县福山市)新建一条 12 英寸(300 毫米)晶圆生产线,并计划到 2025 年将其产能比 2020 年翻一番。    据该公司称,由于汽车自动化、消费设备逆变器的进步和工业/可再生能源的节能需求,功率器件市场在2020年到2025年之间将以12%的复合年增长率(CAGR)增长。而电气化铁路的发展,以及自动化的进步。预计会以速度扩大。    功率器件市场前景    三菱电机将公司功率器件业务的目标设定为——到2025年销售额2400亿日元以上、营业利润率10%以上。为实现目标,三菱电机将重点关注增长预期较高的汽车领域和公司市场占有率较高的消费领域,两个领域按领域销售的比例将从2020年的 50%提升到到2025年的65% 。    公司的增长目标和业务政策    三菱电机还表示还表示,与 2020 年相比,公司计划到 2025 年将晶圆制造(前道处理)的产能翻一番。封装和检测环节(后道工序)也将“及时、适当地投入”以满足未来的需求。按照三菱电机的计划,公司在未来五年(至2025年)的投资规模约为1300亿日元。    这项投资的一个典型例子是在福山工厂建设 8 英寸(200 毫米)和 12 英寸生产线。8英寸生产线将于2021年11月开始试运行,并计划于2022年春季开始量产。12英寸线的量产目标是2024年。    固定投资计划概要    新的12英寸生产线具有通过增加硅片直径和通过自动化提高生产力的优势,以及通过在内部增加载流子存储层实现低损耗的独特“CSTBT cell结构”晶圆。通过这种改进,三菱电机希望能够实现低损耗和提高生产率,三菱电机也将把它应用到 RC-IGBT 上,以实现其产品的差异化,而汽车领域和消费领域将是公司这些产品的首个目标市场。    三菱电机同时表示,公司也在加强对 SiC 的努力,它具有从大型电动汽车扩展到中型电动汽车的潜力。除了将独特的制造工艺应用于沟槽 MOSFET 以进一步提高性能和生产力之外,该公司还考虑制造 8 英寸Si晶圆。    该公司表示,“我们将根据客户的需求适当地使用硅和 SiC 来加强我们的业务。通过提供集成了硅芯片 / SiC 芯片的模块阵容,我们将满足从小到大客户的多样化需求。”解释说。    富士电机表示,将增产功率半导体    2022年1月27日,富士电机表示,将增产功率半导体生产基地富士电机津轻半导体(青森县五所川原市/以下简称津轻工厂)的SiC(碳化硅)产能。量产计划在截至 2025 年 3 月的财政年度开始。    未来五年,富士电机将扩大 8 英寸硅片前端生产线为中心,进行与功率半导体相关的资本投资,总额 将高达1200 亿日元。但是,为了应对电动汽车和可再生能源对功率半导体的需求增加,富士电机决定追加投资,包括在津轻工厂建设 SiC 功率半导体生产线。    “功率半导体的资本投资预计将增加到1900亿日元,”该公司表示。    罗姆,继续加码SiC    抢攻电动车(EV)商机、日厂忙增产EV用次世代半导体「碳化硅(SiC)功率半导体」。    据日经新闻早前报导,因看好来自电动车(EV)的需求将扩大,也让罗姆(Rohm)等日本厂商开始相继增产节能性能提升的EV用次世代半导体。各家日厂增产的对象为用来供应\控制电力的「功率半导体」产品,不过使用的材料不是现行主流的硅(Si)、而是采用了碳化硅(SiC)。SiC功率半导体使用于EV逆变器上的话,耗电力可缩减5-8%、可提升续航距离,目前特斯拉(Tesla)和中国车厂已开始在部分车款上使用SiC功率半导体。    报导指出,因看好来自EV的需求有望呈现急速扩大,罗姆将投资500亿日圆、目标在2025年之前将SiC功率半导体产能提高至现行的5倍以上。罗姆位于福冈县筑后市的工厂内已盖好SiC新厂房、目标2022年启用,中国吉利汽车的EV已决定采用罗姆的SiC功率半导体产品,而罗姆目标在早期内将全球市占率自现行的近2成提高至3成。    罗姆在该领域一直处于领先地位,2010 年量产了世界上第一个 SiC 晶体管。2009 年收购的德国子公司 SiCrystal 生产 SiC 晶圆,使罗姆具备了从头到尾的生产能力。它最近在日本福冈县的一家工厂开设了一个额外的生产设施,这是将产能增加五倍以上的计划的一部分。    携手电装,联电将在日本建12吋IGBT线    早前,日本电装(DENSO)发表消息称,公司将和全球半导体代工厂联合微电子公司达成协议,同意在联电日本晶圆厂子公司USJC 300 毫米晶圆厂,合作生产功率半导体,以满足汽车市场不断增长的需求。    USJC 的晶圆厂将安装绝缘栅双极晶体管 (IGBT) 生产线,这将是日本第一家在 300 毫米晶圆上生产 IGBT 的工厂。DENSO 将贡献其面向系统的 IGBT 器件和工艺技术,而 USJC 将提供其 300mm 晶圆制造能力,以将 300mm IGBT 工艺量产,该计划于 2023 年上半年开始。此次合作得到了改造和脱碳计划的支持日本经济产业省不可缺少的半导体。    随着全球减少碳排放的努力,电动汽车的开发和采用加速,汽车电气化所需的半导体需求也在迅速增加。IGBT 是功率卡中的核心器件,用作逆变器中的高效功率开关,用于转换直流和交流电流,以驱动和控制电动汽车电机。    “DENSO 很高兴成为日本首批开始在 300 毫米晶圆上量产 IGBT 的公司的成员,”电装总裁 Koji Arima 说。“随着移动技术的发展,包括自动驾驶和电气化,半导体在汽车行业变得越来越重要。通过此次合作,我们将为功率半导体的稳定供应和汽车的电气化做出贡献。”    “作为日本的主要代工企业,USJC 致力于支持政府促进国内半导体生产和向更环保的电动汽车过渡的战略,”USJC 总裁 Michiari Kawano 说。“我们相信,我们获得汽车客户认证的代工服务与电装的专业知识相结合,将生产出高质量的产品,为未来的汽车趋势提供动力。”    “我们很高兴与电装这样的领先公司进行这种双赢的合作。这是联电的一个重要项目,将扩大我们在汽车领域的相关性和影响力,”联电联席总裁 Jason Wang 说。“凭借我们强大的先进专业技术组合和位于不同地点的 IATF 16949 认证晶圆厂,联华电子能够很好地满足汽车应用的需求,包括先进的驾驶辅助系统、信息娱乐、连接和动力系统。我们期待在未来与汽车领域的顶级参与者利用更多的合作机会。”    此外,在去年十二月,电装还宣布,作为其实现低碳社会努力的一部分,其配备了高质量的碳化硅 (SiC) 功率半导体的最新型号升压功率模块已开始量产,并被用于于2020 年 12 月 9 日上市的丰田新 Mirai 车型上。    在介绍中,DENSO表示,公司开发了 REVOSIC 技术,旨在将 SiC 功率半导体(二极管和晶体管)应用于车载应用。他们指出,碳化硅是一种与传统硅(Si)相比在高温、高频和高压环境中具有优越性能的半导体材料。因此,在关键器件中使用 SiC 以显着降低系统的功率损耗、尺寸和重量并加速电气化引起了广泛关注。    2014 年,DENSO 推出了一款用于非汽车应用的 SiC 晶体管,并将其商业化用于音频产品。DENSO 继续对车载应用进行研究,2018 年,丰田在其 Sora 燃料电池巴士中使用了车载 SiC 二极管。    现在,DENSO 开发了一种新的车载 SiC 晶体管,这标志着 DENSO 首次将 SiC 用于车载二极管和晶体管。新开发的SiC 晶体管在车载环境中提供高可靠性和高性能,这对半导体提出了挑战,这要归功于 DENSO 独特的结构和加工技术,应用了沟槽栅极 MOSFET。搭载SiC功率半导体(二极管、晶体管)的新型升压功率模块与搭载Si功率半导体的以往产品相比,体积缩小约30%,功率损耗降低约70%,有助于实现小型化。升压电源模块,提高车辆燃油效率。    DENSO 表示,公司将继续致力于 REVOSIC 技术的研发,将技术应用扩展到电动汽车,包括混合动力汽车和纯电动汽车,从而助力建设低碳社会。    近日,DENSO 在一篇新闻稿中指出,功率半导体就像人体的肌肉。它根据来自 ECU(大脑)的命令移动诸如逆变器和电机(四肢)之类的组件。车载产品中使用的典型功率半导体由硅 (Si) 制成。相比之下,碳化硅在高温、高频和高压环境中具有卓越的性能,有助于显着降低逆变器的功率损耗、尺寸和重量。因此,SiC 器件因其加速车辆电气化而受到关注。    电装指出,与采用硅功率半导体的传统产品相比,采用公司碳化硅功率半导体的升压功率模块体积缩小了约 30%,功率损耗降低了 70%。这就可以让产品变得更小,车辆燃油效率得到提高。    电装工程师也表示,与硅相比,碳化硅的电阻低,因此电流更容易流动。由于这种特性,一个原型 SiC 器件被突然的大电流浪涌损坏。为此电装的多部门合作讨论如何在充分利用 SiC 的低损耗性能的同时防止损坏市场上的设备,并以一个我们部门无法单独提出的想法解决了这个问题:使用特殊的驱动器 IC 高速切断电流。
关键词:
发布时间:2022-09-27 13:15 阅读量:2111 继续阅读>>

跳转至

/ 2

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。