德州仪器计划大规模将<span style='color:red'>GaN</span>芯片生产由6英寸转换成8英寸
  据韩媒报导,模拟芯片大厂德州仪器(TI)的一位高层表示,该公司正在将其多个晶圆厂生产的6英寸氮化镓(GaN)芯片,转移到8英寸晶圆厂来生产。  报导指出,德州仪器韩国公司经理Jerome Shin在首尔举行的新闻发布会上表示,德州仪器正在达拉斯和日本会津准备兴建8英寸晶圆厂,这将使其能够提供更具价格竞争力的GaN芯片。  JeromeShin指出,人们普遍认为GaN芯片比碳化硅(SiC)芯片更昂贵,但这种看法自2022年以来发生了转变。因为德州仪器正在将其生产由6英寸晶圆厂转换为8英寸晶圆厂,而生产更大的晶圆代表着每个晶圆上都有更多的芯片,这可以提高公司的生产力,也使量产的GaN芯片价格能更加便宜。  而现阶段,GaN芯片的价格已经低于SiC芯片。未来,德州仪器在达拉斯和日本会津工厂的改造完成后,将能够进一步能够提供更便宜的解决方案。达拉斯工厂的扩产预计将于2025年完成,不过JeromeShin并未透露日本会津工厂的时间表。  不过,有市场人士表示,德州仪器这样的计划可能会导致GaN芯片价格全面下跌。目前,德州仪器也正在将电源管理芯片的生产从8英寸晶圆厂转变为12英寸晶圆。这动作也已经使产业间的电源管理芯片价格下跌。不过,将电源管理芯片的生产从8英寸晶圆厂转变为12英寸晶圆这可使得德州仪器节省10%以上的成本。
关键词:
发布时间:2024-03-22 15:41 阅读量:418 继续阅读>>
罗姆的Eco<span style='color:red'>GaN</span>™被台达电子Innergie品牌的45W输出AC适配器“C4 Duo”采用!
  全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)的650V GaN器件(EcoGaN™),被台达电子(Delta Electronics, Inc.,以下简称“台达”)Innergie 品牌的45W输出AC适配器(快速充电器)“C4 Duo” 采用。台达是基于IoT技术的绿色解决方案全球供应商。Innergie的AC适配器通过搭载可提高电源系统效率的罗姆EcoGaN™“GNP1150TCA-Z”,提高了产品性能和可靠性的同时也实现了小型化。  在推动实现无碳社会的进程中,由于处理大功率的设备的功率损耗尤为显著,因而相关制造商正在采取措施加快节能步伐。另外,对于电源而言,如果能够使器件高频工作,不仅可以节能,还可以实现电路的小型化,因此在产品中搭载使用了可实现高速开关的GaN(氮化镓)的器件已经被很多制造商提上日程。  罗姆将使用了GaN的器件命名为“EcoGaN™”品牌,并正在不断扩大其产品阵容。GaN的潜力很大,但处理起来却很难,目前罗姆正在推进注重“易用性”的产品开发并提供相关解决方案。在分立产品方面,罗姆已于2022年开始量产150V耐压的GaN HEMT,并于2023年开始量产实现业界超高性能(RDS(ON)×Ciss / RDS(ON)×Coss)的650V耐压GaN HEMT。此次,由于650V耐压产品“GNP1150TCA-Z”内置的ESD保护元件,使其静电耐受能力比普通GaN HEMT提高了约75%,而这有助于提高应用产品的可靠性,在这方面的出色表现得到了客户的认可,从而被应用到客户的产品中。              Innergie(台达的品牌) General Manager Jason Chen表示:      “GaN功率器件的技术进步引起了全球电子行业的高度关注。过去多年来,双方交流不断加深,并于2022年就电源系统用的功率器件达成了战略合作伙伴关系。作为双方技术交流的成果,罗姆的650V GaN HEMT“GNP1150TCA-Z”为Innergie新产品提供了支持。“C4 Duo”是“One for All系列”产品中第一款使用罗姆GaN器件的产品,希望未来能够用在更多型号的产品中。相信通过继续加强与罗姆的合作,我们将能够提供输出功率更高、功能更强大的AC适配器。”  罗姆 LSI事业本部 电源LSI业务担当 Power Stage商品开发部 部长 山口 雄平表示:     “非常荣幸罗姆的EcoGaN™能够被电源管理和热对策领域的全球领导者台达的AC适配器采用。罗姆正在通过提高功率半导体的性能和可构建更出色拓扑结构的模拟技术,助力台达提高其大功率电源装置的功率转换效率。另外,两家公司在实现无碳社会和数字社会方面有着相似的经营愿景,利用台达在电源电路设计方面的优势以及罗姆在器件和IC等产品方面的优势,双方建立了稳固的合作关系,这也促成了此次的成功采用。希望双方利用不断深入的合作关系,继续推动更小型、更高效的充电器等产品开发,为丰富人们的生活做出贡献。”  <相关网页>        ・台达官网  https://www.delta-china.com.cn/zh-CN/index  ・Innergie官网  https://myinnergie.com/us/product/c4-duo-45w-dual-usbc-power-adapter-fold/  ・罗姆的GaN功率器件产品页面  https://www.rohm.com.cn/products/gan-power-devices  <关于罗姆的EcoGaN™>      EcoGaN™是通过更大程度地发挥GaN的性能,助力应用产品进一步节能和小型化的罗姆GaN器件,该系列产品有助于应用产品进一步降低功耗、实现外围元器件的小型化、减少设计工时和元器件数量等。・EcoGaN™是ROHM Co., Ltd.的商标或注册商标。
关键词:
发布时间:2024-02-27 10:13 阅读量:1012 继续阅读>>
Girl Gang Garage利用三维扫描解决方案ZEISS T-SCAN hawk 2进行定制汽车改造
  看看Pam是如何借助蔡司三维扫描解决方案、逆向工程和三维打印实现EV充电端口盖定制化。  Girl Gang Garage的核心理念是女性赋权。在以男性为主导的汽车行业中,Bogi Lateiner致力于为才华横溢的女性搭建一个网络平台。无论是寻求汽车行业和技工行业的入行机会,还是实现技艺提升,都能在Girl Gang Garage找到答案。该平台奉行的独特使命正在持续发展并实现,期望为下一代创造新机遇。  基于这一使命,Girl Gang Garage在美国亚利桑那州菲尼克斯发起了一项倡议,吸引了约150名女性参与其中,现场不仅可免费使用汽车工具,还有多种项目可参与,为女性职业选择提供新思路,提升女性职业信心。  改造点燃热爱  回顾过往,Girl Gang Garage的团队已经证明了其在汽车改造方面的能力。无论是Chevy Montage 57(2018)还是High Yellow 56(2019),改造过程都十分成功。图1和图2展示了车辆修复的最终结果。  Pam Waterman(PADT Inc.高级应用工程师)利用第一代ZEISS T-SCAN hawk系统,协助Girl Gang Garage采集多辆汽车的数字副本。例如,可以完全获取Volvo PV544车身的内外部数据。此外,团队还对Volvo S60的仪表板、天线和天线盖、门把手(盖和内部机构)以及EV充电端口盖进行了三维扫描。数据包含测量结果、形状和STL文件,可作为新组件的设计依据。  结合其他富有才华的女性工程师完成的逆向工程设计,Bogi和Pam利用三维打印技术打印出各种部件,包括新的天线盖、后置摄像头外壳、定制的引擎盖下支架和组件以及新充电端口盖原型。  下一挑战:使用新一代手持式三维激光扫描仪扫描复杂组件  该团队的任务是帮助Bogi规划改进Iron Maven车辆的EV充电端口盖(图3)。通过对由金属和注塑成型塑料制成的复杂组件的整个机构进行扫描(正面、背面、铰链、闩锁和通孔),获取新三维打印盖所需的所有尺寸信息。而挑战在于如何将深色和光泽表面与深口相结合。必须从多个角度采集数据以验证所有尺寸的正确性。  升级至ZEISS T-SCAN hawk 2的高级扫描功能  在过往两年里,Pam一直使用的是第一代ZEISS T-SCAN hawk。在近期项目中,他们尝试使用升级型号(ZEISS T-SCAN hawk 2)的高级功能。  令她欣喜的是,效果远超预期:”手持便携性、快速捕获速度以及深孔探测能力的结合完美应用于Girl Gang Garage车间。” Pam Waterman说到。  准备工作十分简单,仅需在工件上及其周围放置几个参考点即可。因此,在工作台和工件上分别应用6 mm和3 mm参考标记,可在后续操作中确保物体顶部和底部的良好转换。  扫描工件时,可使用远程工作流程加速整个扫描过程。借助于此,Pam可在工件周围自由移动,从各个角度收集数据。内置红色激光距离指示可确保始终保持最佳工作距离。使用ZEISS T-SCAN hawk 2单激光线探测深孔内部,即使在狭小的视角,也可获得工件信息。为了获得准确结果,使用合适喷粉喷涂难以扫描的表面并不少见。但高级应用工程师表示,T-SCAN hawk 2无需这一步骤即可实现扫描。  无需喷涂,系统即可对光泽和反光工件进行扫描。T-SCAN hawk 2可消除扫描过程中可能出现的所有不便。因此,团队在几分钟内即可完成数据收集。  充电端口盖的数据收集完成后,Girl Gang Garage团队在ZEISS Quality Suite检测软件中对数据进行处理。基于一体化解决方案的优势,可轻松进行数据评估。  处理具有多个尺寸的复杂工件时,需从不同角度和侧面对其进行扫描,以捕捉每个细节。如果目标为正确分析工件,则需首先转换扫描。无论是通过参考点对齐还是通过特征最佳拟合对齐,两种模式下顶部与底部之间的转换瞬息即可完成。此外,Pam表示,结合蔡司硬件和检测软件,“多边化处理过程的速度远超以往”。  三维扫描为三维打印提供数据  基于三维扫描收集的数据和软件中的信息包,团队能够创建一个新的且经过优化的充电端口盖原型,并符合原始工件的所有要求。基于旧端口盖扫描数据,通过三维打印完成以上过程。随后将制造完成的工件进行首次装配尝试。但因塑料工件存在翘曲,装配过程并不简单。  为进一步处理并优化三维打印,T-SCAN hawk 2不可或缺。该团队目前拥有一个全面的数据库,记录需返工和更改的工件信息,以实现工件精准配合。
关键词:
发布时间:2024-01-15 09:29 阅读量:1182 继续阅读>>
瑞萨宣布收购Transphorm,大举进军<span style='color:red'>GaN</span>
  全球半导体解决方案供应商瑞萨电子与全球氮化镓(GaN)功率半导体供应商Transphorm, Inc.(以下“Transphorm”)于今天宣布双方已达成最终协议,根据该协议,瑞萨子公司将以每股5.10美元现金收购Transphorm所有已发行普通股,较Transphorm在2024年1月10日的收盘价溢价约35%,较过去十二个月的成交量加权平均价格溢价约56%,较过去六个月的成交量加权平均价格溢价约78%。此次交易对Transphorm的估值约为3.39亿美元。  此次收购将为瑞萨提供GaN(功率半导体的下一代关键材料)的内部技术,从而扩展其在电动汽车、计算(数据中心、人工智能、基础设施)、可再生能源、工业电源以及快速充电器/适配器等快速增长市场的业务范围。  作为碳中和的基石,对高效电力系统的需求正在不断增加。为了应对这一趋势,相关产业正在向以碳化硅(SiC)和GaN为代表的宽禁带(WBG)材料过渡。这些先进材料比传统硅基器件具备更广泛的电压和开关频率范围。在此势头下,瑞萨已宣布建立一条内部SiC生产线,并签署了为期10年的SiC晶圆供应协议。  瑞萨现目标是利用Transphorm在GaN方面的专业知识进一步扩展其WBG产品阵容。GaN是一种新兴材料,可实现更高的开关频率、更低的功率损耗和更小的外形尺寸。这些优势使客户的系统具有更高效、更小、更轻的结构以及更低的总体成本。也因此,根据行业研究,GaN的需求预计每年将增长50%以上。瑞萨将采用Transphorm的汽车级GaN技术来开发新的增强型电源解决方案,例如用于电动汽车的X-in-1动力总成解决方案,以及面向计算、能源、工业和消费应用的解决方案。  瑞萨首席执行官柴田英利表示:“Transphorm是一家由来自加州大学圣塔芭芭拉分校、并扎根于GaN功率、经验丰富的团队所领导的公司。Transphorm GaN技术的加入增强了我们在IGBT和SiC领域的发展势头。它将推动和扩大我们的关键增长支柱之一的功率产品阵容,使我们的客户能够选择最佳的电源解决方案。”  Transphorm联合创始人、总裁兼首席执行官Primit Parikh博士以及Transphorm联合创始人兼首席技术官Umesh Mishra博士表示:“结合瑞萨全球布局、广泛的解决方案和客户关系,我们很高兴能为WBG材料的行业广泛采用铺平道路,为其显着增长奠定基础。这项交易还将使我们能够为客户提供进一步扩展服务,并为我们的股东带来可观的即时现金价值。此外,它将为我们杰出的团队提供一个强大的平台,以进一步发展Transphorm卓越的GaN技术和产品。”
关键词:
发布时间:2024-01-11 15:14 阅读量:1380 继续阅读>>
想要玩转氮化镓?纳芯微全场景<span style='color:red'>GaN</span>驱动IC解决方案来啦!
  作为当下热门的第三代半导体技术,GaN在数据中心、光伏、储能、电动汽车等市场都有着广阔的应用场景。和传统的Si器件相比,GaN具有更高的开关频率与更小的开关损耗,但对驱动IC与驱动电路设计也提出了更高的要求。  按照栅极特性差异,GaN分为常开的耗尽型(D-mode)和常关的增强型(E-mode)两种类型;按照应用场景差异,GaN需要隔离或非隔离、低边或自举、零伏或负压关断等多种驱动方式。针对不同类型的GaN和各种应用场景,纳芯微推出了一系列驱动IC解决方案,助力于充分发挥GaN器件的性能优势。  01、耗尽型(D-mode)GaN 驱动方案  一、D-mode GaN类型与特点  由于常开的耗尽型GaN本身无法直接使用,需要通过增加外围元器件的方式,将D-mode GaN从常开型变为常关型,主要包括级联(Cascode)和直驱(Direct Drive)两种技术架构;其中,级联型的D-mode GaN更为主流。如下图1,级联型的D-mode GaN是通过利用低压Si MOSFET的开关带动整体的开关,从而将常开型变为常关型。  尽管低压Si MOS在导通时额外串入沟道电阻,并且参与了器件的整体开关过程,但由于低压Si MOS的导通电阻和开关性能本身就很理想,所以对GaN器件的整体影响非常有限。  级联型的D-mode GaN最大的优势在于可用传统Si MOS的驱动电路,以0V/12V电平进行关/开的控制。但需要注意的是,尽管驱动电路和Si MOS相同,但由于级联架构的D-mode GaN的开关频率和速度远高于传统的Si MOS,所以要求驱动IC能够在很高的dv/dt环境下正常工作。  如下图2和图3所示为氮化镓采用半桥拓扑典型应用电路,GaN的高频、高速开关会导致半桥中点的电位产生很高的dv/dt跳变,对于非隔离驱动IC,驱动芯片的内部Level shifter寄生电容会在高dv/dt下产生共模电流;对于隔离驱动IC,驱动芯片的输入输出耦合电容同样构成共模电流路径。这些共模电流耦合到信号输入侧会对输入信号造成干扰,可能会触发驱动芯片的误动作,严重时甚至会引发GaN发生桥臂直通。  因此,共模瞬变抗扰度(CMTI)是选择GaN驱动IC的一个重要指标。对于GaN器件,特别是高压、大功率应用,推荐使用100V/ns以上CMTI的驱动IC,以满足更高开关频率、更快开关速度的需求。  二、纳芯微D-mode GaN驱动方案  纳芯微提供多款应用于D-mode GaN的驱动解决方案,以满足不同功率段、隔离或非隔离等不同应用场景的需求。  1)NSD1624:高可靠性高压半桥栅极驱动器  传统的非隔离高压半桥驱动IC一般采用level-shifter架构,由于内部寄生电容的限制,通常只能耐受50V/ns的共模瞬变。NSD1624创新地将隔离技术应用于高压半桥驱动IC的高边驱动,将dv/dt耐受能力提高到150V/ns,并且高压输出侧可以承受高达±1200V的直流电压。此外,NSD1624具有+4/-6A驱动电流能力,能工作在10~20V 电压范围,高边和低边输出均有独立的供电欠压保护功能(UVLO)。NSD1624 可提供SOP14,SOP8,与小体积的LGA 4*4mm封装,非常适合高密度电源的应用,可适用于各种高压半桥、全桥电源拓扑。  2)NSI6602V/NSI6602N:第二代高性能隔离式双通道栅极驱动器  NSI6602V/NSI6602N是纳芯微第二代高性能隔离式双通道栅极驱动器, 相比第一代产品进一步增强了抗干扰能力和驱动能力,同时提高了输入侧的耐压能力,且功耗更低,可以支持最高2MHz工作开关频率。每个通道输出以快速的25ns传播延迟和5ns的最大延迟匹配来提供最大6A/8A的拉灌电流能力,150V/ns的共模瞬变抗扰度(CMTI) 提高了系统抗共模干扰能力。NSI6602V/NSI6602N有多个封装可供选择,最小封装是4*4mm LGA 封装,可用于GaN等功率密度要求高的场景。  3)NSI6601/NSI6601M:隔离式单通道栅极驱动器  NSI6601/6601M 是隔离式单通道栅极驱动器,可以提供分离输出用于分别控制上升和下降时间。驱动器的输入侧为3.1V至17V电源电压供电,输出侧最大电源电压为32V,输入输出电源引脚均支持欠压锁定(UVLO)保护。它可以提供5A/5A 的拉/灌峰值电流,最低150V/ns的共模瞬变抗扰度(CMTI)确保了系统鲁棒性。此外,NSI6601M还集成了米勒钳位功能,可以有效抑制因米勒电流造成的误导通风险。  02、增强型(E-mode)GaN驱动方案  一、E-mode GaN类型与特点  不同于Cascode D-mode GaN通过级联低压Si MOS来实现常关型,E-mode GaN直接对GaN栅极进行p型掺杂来修改能带结构,改变栅极的导通阈值,从而实现常断型器件。  根据栅极结构不同,E-mode GaN又分为欧姆接触的电流型和肖特基接触的电压型两种技术路线,其中电压型E-mode GaN最为主流,下文将主要介绍该类型GaN的驱动特性和方案。  这种类型E-mode GaN的优点是可以实现0V关断、正压导通,并且无需损害GaN的导通和开关特性。由于GaN没有体二极管,不存在二极管的反向恢复问题,在硬开关场合可以有效降低开关损耗和EMI噪声。然而,电压型E-mode GaN驱动电压范围较窄,一般典型驱动电压范围在5~6V,并且开启阈值也很低,对驱动回路的干扰与噪声会比较敏感,设计不当的话容易引起GaN误开通甚至栅极击穿。  *不同品牌的E-mode GaN栅极耐受负压能力差别较大,有的仅能耐受-1.4V,有的可耐受-10V负压。  在低电压、小功率,或对死区损耗敏感的应用中,一般可使用0V电压关断;但是在高电压、大功率系统中,往往推荐采用负压关断来增强噪声抗扰能力,保证可靠关断。在设计栅极关断的负压时,除了需要考虑GaN本身的栅极耐压能力外,还需要考虑对效率的影响。如下表所示,这是因为E-mode GaN在关断状态下可以实现电流的反向流动即第三象限导通,但是反向导通压降和栅极关断的负压值相关,用于栅极关断的电压越负,反向压降就越大,相应的会带来更大的死区损耗。一般,对于500W以上高压应用,特别是硬开关,推荐-2V~-3V的关断负压。  ➯ 考虑E-mode GaN的以上驱动特性,对驱动器和驱动电路的设计一般需要满足:  ◆ 具备100V/ns以上的CMTI,以满足高频应用的抗扰能力;  ◆可提供5~6V的驱动电压,并且驱动器最好集成输出级LDO;  ◆ 驱动器最好有分开的OUTH和OUTL引脚,从而不必通过二极管来区分开通和关断路径,避免了二极管压降造成GaN误导通的风险;  ◆ 在高压、大功率应用特别是硬开关拓扑,可以提供负压关断能力;  ◆ 尽可能小的传输延时和传输延时匹配,从而可以设定更小的死区时间,以减小死区损耗。  二、E-mode GaN驱动方案  分压式方案  E-mode GaN可以采用传统的Si MOS驱动器来设计驱动电路,需要通过阻容分压电路做降压处理。如图8所示驱动电路,开通时E-mode GaN栅极电压被Zener管稳压在6V左右,关断时被Zener管的正向导通电压钳位在-0.7V左右。因此,GaN的开通和关断电压由Dz决定,和驱动器的供电电压无关。  更进一步的,如果在Dz的基础上,再反向串联一个Zener管,那么就可以实现负压关断。  如图10所示,为NSD1624采用10V供电,通过阻容分压的方式用于驱动E-mode GaN的典型应用电路。同样的,隔离式驱动器NSI6602V/NSI6602N、NSI6601/NSI6601M也可以采用这种电路,用于驱动E-mode GaN。对于阻容分压电路的原理与参数设计在E-mode GaN厂家的官网上都有相关应用笔记,在此不展开详解。  直驱式方案  尽管阻容分压式驱动电路,可以采用传统的Si MOSFET驱动器来驱动E-mode GaN,但是需要复杂的外围电路设计,并且分压式方案的稳压管的寄生电容会影响到E-mode GaN的开关速度,应用会有一些局限性。对此,纳芯微针对E-mode GaN推出了专门的直驱式驱动器,外围电路设计更简单,可靠性更高,可以充分发挥E-mode GaN的性能优势。  1)NSD2621:E-mode GaN专用高压半桥栅极驱动器  NSD2621是专为E-mode GaN设计的高压半桥驱动芯片,该芯片采用了纳芯微的成熟电容隔离技术,可以支持-700V到+700V耐压,150V/ns的半桥中点dv/dt瞬变,同时具有低传输延时特性。高低边的驱动输出级都集成了LDO,在宽VCC供电范围内均可输出5~6V的驱动电压,并可提供2A/-4A的峰值驱动电流,同时具备了UVLO 功能,保护电源系统的安全工作。NSD2621 可提供高集成度的LGA (4*4mm) 封装,适用于高功率密度要求的应用场景。图5为NSD2621的典型应用电路,相比分压式电路,采用NSD2621无需电阻、电容、稳压管等外围电路,简化了系统设计,并且驱动更可靠。  2)NSD2017:E-mode GaN专用单通道低边栅极驱动器  NSD2017是专为驱动E-mode GaN设计的车规级单通道低边驱动芯片,具有欠压锁定和过温保护功能,可以支持5V供电,分离的OUTH和OUTL引脚用于分别调节GaN的开通和关断速度,可以提供最大7A/-5A的峰值驱动电流。NSD2017动态性能出色,具备小于3ns的传输延时,支持1.25ns最小输入脉宽以及皮秒级的上升下降时间,可应用于激光雷达和电源转换器等应用。NSD2017有1.2mm*0.88mm WLCSP和2mm*2mm DFN车规级紧凑封装可选,封装具有最小的寄生电感,以减少上升和下降时间并限制振铃幅值。  3)NSI6602V/NSI6602N:E-mode GaN隔离驱动  专门针对E-mode GaN隔离驱动的需求,纳芯微调节NSI6602V/NSI6602N的欠压点,使其可以直接用于驱动E-mode GaN:当采用0V关断时,选择4V UVLO版本;当采用负压关断时,可以选择6V UVLO版本。需要注意的是,当采用NSI6602V/NSI6602N直接驱动E-mode GaN时,上管输出必须采用单独的隔离供电,而不能采用自举供电。这是因为当下管E-mode GaN在死区时进入第三象限导通Vds为负压,此时驱动上管如果采用自举供电,那么自举电容会被过充,容易导致上管E-mode GaN的栅极被过压击穿。图13为NSI6602V/NSI6602N直驱E-mode GaN时的典型应用电路,提供+6V/-3V的驱动电压。  03、GaN功率芯片方案  NSG65N15K是纳芯微最新推出的GaN功率芯片产品,内部集成了半桥驱动器和两颗耐压650V、导阻电阻150mΩ的E-mode GaN HEMT。NSG65N15K通过将驱动器和GaN合封在一起,消除了共源极电感Lcs,并且将栅极回路电感Lg也降到最小,避免了杂散电感的影响。NSG65N15K是9*9mm的QFN封装,相比传统分立方案的两颗5*6mm DFN封装的GaN开关管加上一颗4*4mm QFN封装的高压半桥驱动,加上外围元件,总布板面积可以减小40%以上。此外,NSG65N15K内置可调死区时间、欠压保护、过温保护功能,有利于实现GaN 应用的安全、可靠工作,并充分发挥其高频、高速的特性优势,适用于各类中小功率GaN应用场合。  04、纳芯微GaN驱动方案选型指南  综上所述,纳芯微针对不同类型的GaN和各种应用场景,推出了一系列驱动IC解决方案,客户可以根据需求自行选择相应的产品:
关键词:
发布时间:2023-12-20 11:47 阅读量:1590 继续阅读>>
村田:使用SiC/<span style='color:red'>GaN</span>功率半导体,提高功率转换效率,无源元件的技术进步很重要!
  世界各国政府以及各行各业的企业正在共同努力,推进迈向碳中和的举措。人们正在从能够想到的多个角度实施脱碳措施,例如使用太阳能发电等可再生能源,让迄今为止燃烧化石燃料的设备实现电气化,降低家用电器、IT设备和工业电机等现有设备的功耗等等。随着越来越多的脱碳举措得到实施,有一个半导体领域的技术创新正在迅速加速。它就是功率半导体。  各个国家和地区已经开始将碳定价机制作为制度引入,以将与业务活动相关的温室气体排放转嫁到成本。因此,脱碳举措不仅具有为社会做贡献的重要意义,而且会对企业经营的成绩单——财务报表也会产生明显的数字影响。  脱碳举措对电子行业产生深远的影响,催生出势不可挡的新一轮半导体技术更替和成长,特别是在功率半导体领域,以碳化硅(SiC)和氮化镓(GaN)等宽禁带材料替代传统硅基器件。  人类为了能在未来减少温室气体排放,时隔半个世纪,半导体材料正面临全面变革!  进一步降低功耗,硅基器件遭遇瓶颈  功率半导体是起到对电气和电子设备运行所需的电力进行管理、控制和转换作用的半导体元件。它被嵌入功率电子电路当中,这些电路包括为家用电器和IT设备稳定提供驱动电力的电源电路、无浪费地传输和分配电力的电力转换电路以及通过可自由控制的扭矩和转速高效率地驱动电机的电路等。  功率半导体有MOSFET、IGBT、二极管等各种元件结构,根据用途分别使用。其中,  MOSFET(Metal Oxide Semiconductor Field Effect Transistor)  即金属氧化物半导体场效应晶体管是一种起到电气开关作用的场效应晶体管。它由3层组成:金属、氧化物和半导体,通过向称为栅极的电极施加电压来进行打开和关闭电流的动作。  IGBT(Insulated Gate Bipolar Transistor)  即绝缘栅双极晶体管,是具有将MOSFET和双极晶体管组合后的结构的晶体管。其特点是同时具有MOSFET的高速动作和双极晶体管的高耐电压、低导通电阻的特点。  尽管结构不同,半个多世纪以来一直使用硅(Si)作为元件材料。这是因为Si具有良好的电气特性,同时具有易于加工成多种元件结构的特性。  然而,目前Si基功率半导体已无法满足进一步降低多种电气和电子设备功耗所需的高水平技术要求。为了克服这一瓶颈况,比Si更适合作为功率半导体材料的碳化硅(SiC)和氮化镓(GaN)等新材料的使用范围正在不断扩大。  SiC和GaN在击穿电场强度(影响耐电压)、迁移率(影响动作速度)和热导率(影响可靠性)等多个物理特性上具有适合功率半导体的特点。如果能够开发出发挥其出众特性的器件,就能制造出具有更高性能的功率半导体。  今天,基于SiC的MOSFET和二极管已经实现了产品化,并已用于电动汽车电机驱动逆变器和太阳能发电功率调节器中的DC/AC转换器等。  基于GaN的HEMT(High Electron Mobility Transistor)也已实现产品化。HEMT是一种高电子迁移率的场效应晶体管,能通过连接不同性质的半导体并诱导高迁移率电子来实现高速开关。目前,氮化镓HEMT已用于超小型PC的AC转换器和智能手机充电器等。  然而,要充分发挥出SiC/GaN的潜力,离不开电容器和电感器等无源元件的同步发展。  发挥SiC/GaN潜力,无源元件不可或缺  仅通过单纯地替换现有电力电子电路中的Si基元件无法充分发挥基于新材料制造的功率半导体的潜力。这是因为组成电力电子电路的其他半导体IC、无源元件甚至控制软件都是在以使用Si基功率半导体为前提的情况下开发和选择的。为了有效利用基于新材料的功率半导体,这些周边元件也需要重新开发和重新选择。  例如,在采用了为降低数据中心服务器的功耗而引进的GaN HEMT的AC/DC 转换器电路中,使用了多个GaN HEMT(上图)。  利用GaN HEMT可以在高电压时进行高速开关的特性,可以提高功率电子电路的开关频率(动作频率)。在动作频率较高的电路中,电路中内置的电容器和电抗器信号处理电路中的电感器的电抗值可以很小。一般来说,低电抗元件的尺寸较小,因此可以让电路板更小并提高功率密度。同样,在驱动电动汽车的电机的逆变器电路等当中也可以通过引入SiC MOSFET实现周边元件小型化,进而实现逆变器电路整体的小型化和轻量化。  另一方面,在高电压时进行高速开关的电源会产生高水平的噪声,这可能会对周边设备的动作产生不利影响。采用SiC或GaN功率半导体构建的电源在更高频率下进行开关,所以进一步增加了风险。因此,需要比使用以前的电力电子电路时更加严格的噪声对策。在这种情况下,需要使用设计用于高电压、大电流和高频电路的静噪元件,而不是用于以前的电路的静噪元件。  除此之外,对于在无源元件当中也属于特别笨重的元件的变压器,也需要在更高频率下工作的小型变压器。现在已经开发出了以使用基于SiC和GaN的功率半导体为前提的薄型平面变压器等,并且已经投入市场。  迄今为止,多种类型的半导体(不仅仅是功率半导体)都是使用以Si为基础制成的。因此,许多现有的电子元件都默认是以与Si基半导体组合使用为前提进行开发的。为了充分发挥采用新材料制成的功率半导体的效果,不仅需要在现有元件中寻找更好的元件,而且可能需要开发满足新技术要求的新元件。  一般来说,在Si基功率半导体中,呈现可以应对更高电压和更大电流的元件的动作速度更低的趋势(上图)。因此,能够应对高电压和大电流的小型电容器和电抗器并不齐全。  此外,在能够在高温下稳定工作的SiC基功率半导体当中,有将散热系统简化以减小尺寸和重量并降低成本的趋势。在这些情况下,无源元件在高温环境下也需要确保高可靠性。  在功率半导体领域引入新材料是对半个多世纪以来针对Si材料进行优化的电气电子生态系统进行根本性变革的重大动向。针对新材料进行优化的周边电子元件的进步也非常值得关注。
关键词:
发布时间:2023-12-06 16:22 阅读量:1752 继续阅读>>
如何优化<span style='color:red'>GaN</span>晶体管的 PCB 布局
  自从 40 多年前,第一款开关电源问世以来,PCB 的布局就一直是电力电子设计中不可或缺的一环。无论采用哪种晶体管技术,我们必须理解和管理 PCB 布局产生的寄生阻抗,确保电路正确、可靠地运行,而且不会引起不必要的电磁干扰(EMI)。  尽管现代的宽禁带功率半导体不像早期的硅技术那样,存在严重的反向恢复问题,但其较快的开关转换,会导致其换向 dv/dt 和 di/dt 比前代硅技术更加极端。应用说明对 PCB 布局提供的建议通常是“尽量减小寄生电感”,但实现这一点的最佳方法并不总是清晰明确。此外,并非所有导电路径都需要有尽可能低的电感:例如,与电感器的互连——显然该路径中已经存在电感。  当然,尽可能降低所有互连电感,并同时消除 PCB 上的所有节点到节点的电容是不可能的。因此,成功的PCB 布局的关键在于,理解在开关电子器件中,哪些地方的阻抗是真正重要的,以及如何减轻这种不可避免的阻抗带来的不良后果。  为此,我们的英飞凌工程师为您列出了10项优化GaN PCB的建议:  1、考虑晶体管开关时电流将流向何处  2、布局电感可能在电路的某些部分很重要,但在其他部分并不重要  3、利用薄介质的 PCB 层对,将布局电感最小化  4、避免偏离 “上/下同路”,造成横向循环  5、任何 SMT 封装的封装电感不一定是固定值  6、使用顶部冷却的 SMT 封装,独立优化电气和热路径  7、在栅极驱动电路的回流路径中使用平板  8、防止容性电流  9、使接地参考电路远离高压侧栅极驱动电路  10、保持开关节点紧凑
关键词:
发布时间:2023-11-22 13:18 阅读量:1561 继续阅读>>
英飞凌完成收购氮化镓系统公司 (<span style='color:red'>GaN</span> Systems)
  德国慕尼黑和加拿大渥太华讯——英飞凌科技于2023年10月24日宣布完成收购氮化镓系统公司(GaN Systems,以下同)。这家总部位于加拿大渥太华的公司,为英飞凌带来了丰富的氮化镓 (GaN) 功率转换解决方案产品组合和领先的应用技术。已获得所有必要的监管部门审批,交易结束后,GaN Systems 已正式成为英飞凌的组成部分。  英飞凌科技首席执行官 Jochen Hanebeck 表示,“氮化镓技术为打造更加低碳节能的解决方案扫清了障碍,有助于推动低碳化进程。收购 GaN Systems 将显著推进公司的氮化镓技术路线图,并让我们同时拥有所有主要的功率半导体技术,进一步增强英飞凌在功率系统领域的领导地位。我们欢迎 GaN Systems 的新同事加入英飞凌。”  目前,英飞凌共有450名氮化镓技术专家和超过350个氮化镓技术专利族,这进一步扩大了英飞凌在功率半导体领域的领先优势,并将大幅缩短新产品上市周期。英飞凌和 GaN Systems 在知识产权、对应用的深刻理解以及成熟的客户项目规划方面优势互补,这为英飞凌满足各种快速增长的应用需求创造了极为有利的条件。  2023年3月2日,英飞凌和 GaN Systems 联合宣布,双方已签署最终协议。根据该协议,英飞凌将斥资8.3亿美元收购 GaN Systems。这笔“全现金”收购交易是使用现有的流动资金来完成的。
关键词:
发布时间:2023-10-25 09:23 阅读量:956 继续阅读>>
ROHM开发出可更大程度激发<span style='color:red'>GaN</span>器件性能的超高速栅极驱动器IC
  全球知名半导体制造商ROHM(总部位于日本京都市)开发出一款超高速驱动GaN器件的栅极驱动器IC“BD2311NVX-LB”。  近年来,在服务器系统等领域,由于 IoT 设备的需求日益增长,电源部分的功率转换效率提升和设备的小型化已经成为重要的社会课题,而这就要求功率元器件的不断优化。另外,不仅在自动驾驶领域,在工业设备和社会基础设施监控等领域应用也非常广泛的 LiDAR*1,也需要通过高速脉冲激光照射来进一步提高识别精度。  在这类应用中,必须使用高速开关器件,因此,ROHM 在推出支持高速开关的 GaN 器件的同时,还开发出可更大程度地激发出 GaN 器件性能的超高速驱动栅极驱动器 IC。不仅如此,ROHM 还会不定期推出更小型的 WLCSP* 2产品,助力应用产品的小型化。  新产品实现了纳秒(ns)量级的栅极驱动速度,从而使GaN器件可实现高速开关。之所以能实现该特性,离不开ROHM对GaN器件的深入研究以及对栅极驱动器IC性能的追求。通过最小栅极输入脉宽为1.25纳秒的高速开关,助力应用产品实现小型化、进一步节能和更高性能。  另外,新产品通过采用ROHM自有的驱动方式、搭载栅极输入波形过冲* 3(一直以来的难题)抑制功能,可以防止因过电压输入而导致的GaN器件故障;通过集成ROHM的EcoGaN™,还可以简化配套产品的设计,有助于提高应用产品的可靠性。不仅如此,针对多样化的应用需求,还可以通过调整栅极电阻,来选择理想的GaN器件。  ROHM拥有有助于节能和小型化的GaN器件产品阵容——“EcoGaN™”系列产品,未来,ROHM将通过提供与更大程度地激发出这些GaN器件性能的栅极驱动器IC相结合的电源解决方案,为实现可持续发展社会贡献力量。  GaN器件有望成为一种在高频范围的性能表现优于硅器件的产品。在功率开关应用中,特别是在DC-DC和AC-DC转换器领域,GaN器件的高频特性可提高功率密度,因而有助于实现更小型、更节能的电路。  而要想更大程度地发挥出GaN器件的性能,不仅需要考虑GaN HEMT*4的低驱动电压,可实现高速开关的栅极驱动器IC也是必不可缺的。ROHM致力于通过先进的驱动器驱动技术来更大程度地提高GaN器件的性能,这引起了我们的关注。我与刘宇晨教授(国立台北科技大学)和夏勤教授(长庚大学)合作,对ROHM的栅极驱动器IC“BD2311NVX”进行了测试。  测试结果证实,与其他驱动器IC相比,BD2311NVX在降压和升压转换器1MHz开关频率下的上升时间更短,开关噪声更小。  缩短驱动器IC的这种上升时间有助于更大程度地发挥出GaN在降低开关损耗方面的优势。另外,我们对于在电源和驱动器等的模拟技术方面优势显著的ROHM GaN解决方案也抱有非常高的期望。  <在LiDAR中的应用示意图>  <产品阵容>  <应用示例>  ・LiDAR(工业设备、基础设施监控应用等)驱动电路  ・数据中心、基站等的48V输入降压转换器电路  ・便携式设备的无线供电电路  ・D类音频放大器等  <参考设计信息>  ROHM官网上提供配备新产品、ROHM 150V GaN“EcoGaN™”和高输出功率激光二极管的LiDAR用参考设计。通过参考设计,有助于减少应用产品的开发工时。  参考设计产品型号:REFLD002-1(矩形波型电路)  REFLD002-2(谐振型电路)  <什么是 EcoGaN™>  EcoGaN™是通过更大程度地发挥 GaN 的性能,助力应用产品进一步节能和小型化的 ROHM GaN 器件,该系列产品有助于应用产品进一步降低功耗、实现外围元器件的小型化、减少设计工时和元器件数量等。  <辛裕明 教授 简介>  1965年出生于台湾台南。国立中央大学理学学士、国立交通大学硕士、加利福尼亚大学圣地亚哥分校电气工程博士。现任台湾国立中央大学(NCU)电气工程专业的教授,以及Applied Physics Express(APEX)和Japanese Journal of Applied Physics(JJAP)的海外编辑。研究对象是基于异质结和宽带隙半导体的元器件和电路开发。  ·个人简历  1997年 加入位于新泽西州沃伦县的Anadigics公司(现为Coherent Corp.)。开发无线  和光纤通信用的GaAs MESFET和pHEMT。  1998年 进入国立中央大学电气工程系任教。  2004年~2005年 伊利诺伊大学厄巴纳-香槟分校访问研究员。  2016年~2017年 加利福尼亚大学洛杉矶分校(UCLA)客座教授。  2019年~2022年 国立中央大学(NCU)光学研究中心主任。  <术语解说>  *1)LiDAR  LiDAR是Light Detection And Ranging(激光探测与测距)的缩写,是使用近红外光、可见光或紫外光照射  对象物,并通过光学传感器捕获其反射光来测量距离的一种遥感(使用传感器从远处进行感测)方式。  *2)WLCSP(Wafer Level Chip Scale Package)  一种在整片晶圆上形成引脚并进行布线等,然后再切割得到单个成品芯片的超小型封装形式。与将晶圆切  割成单片后通过树脂模塑形成引脚等的普通封装形式不同,这种封装可以做到与内部的半导体芯片相同大  小,因此可以缩减封装的尺寸。  *3)过冲  开关ON/OFF时瞬间产生超出规定值电压的现象。  *4) GaN HEMT  GaN(氮化镓)是一种用于新一代功率元器件的化合物半导体材料。与普通的半导体材料——Si(硅)相比,具有更优异的物理性能,目前,因其具有出色的高频特性,越来越多的应用开始采用这种材料。  HEMT是High Electron Mobility Transistor(高电子迁移率晶体管)的英文首字母缩写。
关键词:
发布时间:2023-10-19 15:10 阅读量:1307 继续阅读>>
ROHM Semiconductor 650V <span style='color:red'>GaN</span> HEMT功率级IC

跳转至

/ 3

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。