TAIYO YUDEN Expands Lineup of Multilayer Metal Power Inductors for Smartphones
  TAIYO YUDEN CO., LTD. has begun mass production of three products, including the LSCND1412FETR47ME (1.4 x 1.2 x 0.65 mm; maximum height shown), in its MCOIL™ LSCN series of multilayer metal power inductors.  These power inductors are for use as choke coils in the power circuits of smartphones. Retaining the same form factor as our previous product "LSCND1412FETR47MC" (1.4 x 1.2 x 0.65 mm), the DC superposition allowable current of our new "LSCND1412FETR47ME" has been increased by 20% to 3.6 A (previously 3.0 A), and its DC resistance has been reduced by 10% to 38 mΩ (previously 42 mΩ). These improvements contribute to boosting the performance of power supply circuits in smartphones, which are becoming increasingly sophisticated and multifunctional.  Mass production of these products commenced at our subsidiary WAKAYAMATAIYO YUDEN CO. LTD. (Inami-cho, Hidaka-gun, Wakayama Prefecture, Japan). Samples are available for 50 yen per unit.  Technology Background  Smartphones are becoming increasingly sophisticated, with capabilities such as AI-based image and video editing, as well as voice and text translation. At the same time, there is demand for greater efficiency in order to keep their body small, and achieve long operating times with limited battery capacity. To achieve both high performance and high efficiency, a smartphone’s processor operates at high speeds with low voltage and high current, and employs a multi-core configuration where each core is equipped with its own power supply circuit, allowing it to improve both its processing power and efficiency by switching the cores used depending on load. This trend in power supply circuits has become particularly pronounced in cutting-edge smartphones, which require both high performance and high efficiency, and in recent years has led to an increase in the adoption of small and thin low-inductance power inductors capable of handling large currents.  To address these needs, at TAIYO YUDEN we have been using metallic magnetic materials with high DC superposition characteristics to optimize the design and other aspects of our MCOIL™ LSCN series multilayer metal power inductors—which have the advantage of allowing them to be made more compact and thinner—commercializing three products, including “LSCND1412FETR47ME,” which deliver 20% greater DC superposition allowable current and 10% smaller DC resistance compared to our previous products.  In response to market needs, we will continue to expand and improve our product lineup with higher functionality and reliability, as well as smaller and thinner products.  ■ Application  For use as a choke coil for power circuits in smartphones and other devices.  ■Characteristics  *1 The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20℃)  *2 The temperature rise current value(Idc2) is the DC current value having temperature increase up to 40℃. (at 20℃)  *3 The rated current value is following either Idc1(max) or Idc2(max), which is the lower one.  * “MCOIL” is a registered trademark or a trademark of TAIYO YUDEN CO., LTD. in Japan and other countries.  * The names of series noted in the text are excerpted from part numbers that indicate the types and characteristics of the products, and therefore are neither product names nor trademarks.
Key word:
Release time:2025-05-30 13:51 reading:232 Continue reading>>
ROHM Develops Compact Surface-Mount Near-Infrared LEDs Featuring Industry-Leading* Radiant Intensity
  ROHM has expanded its portfolio of surface-mount near-infrared (NIR) LEDs with new compact top-view types. They are optimized for applications such as VR/AR devices, industrial optical sensors, and human detection sensors.  The demand for advanced sensing technologies utilizing near-infrared (NIR) has grown in recent years, particularly in VR/AR equipment and biosensing devices. These technologies are used in applications such as eye tracking, iris recognition, and blood flow/oxygen saturation measurements that require high accuracy. At the same time, miniaturization, energy efficiency, and design flexibility are becoming increasingly important. In industrial equipment, near-infrared LEDs are playing a greater role with the rise of precise printer control and automation systems. In response, ROHM is expanding customer options by developing a lineup of compact packages and wavelengths that offer greater design flexibility, while contributing to higher precision and power savings by achieving high radiant intensity.  The new lineup consists of six models in three package configurations, including two ultra-compact (1.0mm × 0.6mm), ultra-thin (t=0.2mm) products as part of the PICOLED™ series: SML-P14RW and SML-P14R3W. In addition, there are four variants in the industry-standard (1.6mm × 0.8mm) size, featuring a narrow beam circular lens package (CSL0902RT, CSL0902R3T) and flat lens design that emits light over a wide range (CSL1002RT, CSL1002R3T). Each package is available in two wavelengths, 850nm (860nm for the SML-P14RW) and 940nm, allowing customers various options for their specific application needs. The 850nm wavelength is ideal for phototransistors and camera sensors, making it suitable for high-sensitivity applications such as eye tracking and object detection in VR/AR. At the same time, the 940nm wavelength is less affected by sunlight and does not appear red when emitting light, making it suitable for motion sensors. It is also widely used in biosensing applications such as pulse oximeters to measure blood flow and oxygen saturation (SpO2).  The light source incorporates an NIR element with an optimized emission layer structure utilizing proprietary technology developed through in-house manufacturing expertise. This has made it possible to achieve industry-leading* radiant intensity in a compact package, which was previously considered difficult. For example, compared to a standard 1006 size product, the SML-P14RW delivers approx. 1.4 times the radiant intensity at the same current. In other words, the SML-P14RW consumes 30% less power to achieve the same radiation intensity. This technology improves sensing accuracy and power savings for the entire system.  Going forward, ROHM will continue to provide innovative light source solutions that support next-generation sensing technologies, creating new value in the VR/AR and industrial equipment markets, while contributing to the realization of a sustainable society.  Compact NIR LED Lineup  *1:Ta=25°C *2:IF=30mA *3:IF=20mA  ROHM also offers NIR-sensitive phototransistors.  Application Examples  • VR/AR licenses (eye tracking, gesture recognition)  • Pulse oximeters (blood flow/oxygen saturation measurement)  • Industrial optical sensors (object passage detection, position detection), self-checkout systems (bill/card detection), mobile printers (paper detection)  • Home appliance remote controls (IR data communication), robot vacuum cleaners (floor detection)  Terminology  VR/AR (Virtual Reality/Augmented Reality)  Virtual reality immerses users in a completely digital environment through small high-resolution monitors or screens within an enclosed space. Augmented reality enhances the real world by overlaying digital content onto a headset or smart glasses, enabling users to interact with 3D images. Collectively, these technologies are sometimes referred to as XR (Cross Reality or Extended Reality).  Near-Infrared (NIR)  Refers to light in the wavelength range of 780nm to 1000nm. Primarily used in sensors, communication and measurement applications, it is suitable for high accuracy distance measurement and recognition.  PICOLED™ Series  ROHM's ultra-small, ultra-thin chip LEDs designed for compact mobile devices and wearables, developed using a proprietary element manufacturing process.  Radiant Intensity  An index representing the strength of energy emitted by a light-emitting device in a specific direction (unit: W/sr). This is an important factor that affects the LED’s output intensity and detection performance on the receiving side.  Note: DigiKey™, Mouser™ and Farnell™ are trademarks or registered trademarks of their respective companies.  *PICOLED™ is a trademark or registered trademark of ROHM Co., Ltd.
Key word:
Release time:2025-05-26 14:54 reading:253 Continue reading>>
Renesas Partners with Indian Government to Drive Innovation Through Startups and Industry-Academia Collaboration, Strengthening India’s Semiconductor Ecosystem
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today announced its partnership with the Ministry of Electronics & Information Technology (MeitY), Government of India, to support local startups and academic institutions in the field of VLSI and embedded semiconductor systems. Renesas also celebrated the expansion of its offices in Bengaluru and Noida to accommodateits growing R&D teams, with the inauguration ceremonies held today. This strategic move underscores Renesas’ commitment to innovation and excellence in India and aims to drive continued growth in the region.  Renesas and the Centre for Development of Advanced Computing (C-DAC), an autonomous scientific society of MeitY, today signed and exchanged two Memoranda of Understanding (MOUs) under the MeitY Chips to Startup (C2S) programme (Note). These MOUs focus on 1) Supporting local startups by enabling them to drive technological advancement andpromote local manufacturing in alignment with the Make in India initiative; and 2) Enhancing industry-academia collaboration by fostering an innovative, product-focused mindset among students.  Shri Ashwini Vaishnaw, Minister for Railways, Information & Broadcasting, and Electronics & Information Technology, Government of India; along with Malini Narayanamoorthi, India Country Manager and VP, MID Engineering, Analog & Connectivity Group at Renesas; and Rea Callendar, Head of Platform Adoption and Ecosystem Enablement at Altium, which joined forces with Renesas in August 2024, attended the celebration at the Noida office. Hidetoshi Shibata, CEO of Renesas, also joined virtually, underscoring the global significance of this milestone.  India is a key market for Renesas, offering significant growth potential and access to a highly skilled talent pool. Renesas is committed to deepening its partnerships with local companies, startups, and universities, with the target to generate over 10 percent of itsglobal revenue from the Indian market by 2030. Recent collaborations include the OSAT factory project with CG Power and Stars Microelectronics in Gujarat and the MOU with IIT Hyderabad. Renesas is also expanding its operations in India, with plans to increase its headcount to 1,000 by the end of 2025. This growth initiative reinforces Renesas' long-term commitment to India and supports its ambition to become an employer of choice in this dynamic and fast-evolving market.  "The inauguration of our expanded offices marks a significant milestone for Renesas in India. It reflects our unwavering commitment to innovation, excellence, and the nurturing of local talent. By building products in India, for India and the world, we continue to drive growth and deliver meaningful impact across the Indian market,” said Malini Narayanamoorthi, India Country Manager and VP, MID Engineering, Analog & Connectivity Group at Renesas. "We are proud to sign two MOUs under the MeitY C2S programme, focused on advancing research, fostering innovation, and nurturing product-focused engineers. These strategic collaborations align with the Make in India initiative, aiming to strengthen local design and manufacturing capabilities and empower homegrown talent to drive the future of industry."  MOUs under MeitY C2S programme  Renesas and C-DAC signed two MOUs to collaborate in the field of VLSI and embedded semiconductor systems, with the aim of supporting local startups and academic institutions to accelerate innovation and foster self-reliance in India’s semiconductor and product ecosystem. The C2S programme encompasses collaboration with over 250 academic institutions and R&D organizations across the country, including IITs, NITs, IIITs, government and private colleges, along with approximately 15 startups, creating a strong ecosystem for indigenous innovation.  MOU for Startups: Renesas will help strengthen the product engineering capabilities of local startups by providing Renesas development boards and Altium Designer, the leading PCB design software.  MOU for Academic Institutions: Renesas will support experiential learning by offering development boards, PCB education and training, Altium Designer software, and access to the Altium 365 cloud platform, aiming to empower the next generation of electronics engineers and nurture a community of innovators.  Opening of new offices in Bengaluru and Noida  In May, Renesas consolidated and relocated its existing offices in Bengaluru and Noida into new, state-of-the-art office spaces, marking a significant milestone in the company’s growth and expansion in India.  The new Bengaluru office is Renesas’ largest site in India, encompassing world-class design teams, test labs, and comprehensive facilities to support employees. It brings together approximately 500 team members, including R&D engineers, business teams, and employees from the recently acquired Altium and Part Analytics, creating a unified and collaborative workspace. The facility is designed to leverage India’s rich talent ecosystem to drive the development of innovative products.  The new Noida office brings the engineering and business teams together to accelerate the delivery of world-class high-performance compute solutions, driving automotive market growth through innovation, collaboration, and consistent execution. This strategic expansion reinforces Renesas’ commitment to investing in top-tier local talent and strengthening its capabilities in R-Car system-on-chip (SoC) solutions. Designed to integrate cutting-edge tools and workflows, the new Noida site will further enhance synergy across the global engineering team and support Renesas’ long-term strategy in this critical domain.  (Note) Chips to Startup (C2S) programme: An initiative launched by the Indian government in December 2021 to boost semiconductor and display manufacturing in the country. C2S not only aims at developing specialized manpower in VLSI/Embedded System Design domain but also addresses each entity of the electronics value chain via specialized manpower training, creation of reusable IP repository, design of application-oriented Systems/ASICs/FPGAs, and deployment by academia/ R&D organization by way of leveraging the expertise available at Startups/MSMEs. For more details, please visit the C2S programme website.  About Renesas Electronics Corporation  Renesas Electronics Corporation (TSE: 6723) empowers a safer, smarter and more sustainable future where technology helps make our lives easier. A leading global provider of microcontrollers, Renesas combines our expertise in embedded processing, analog, power and connectivity to deliver complete semiconductor solutions. These Winning Combinations accelerate time to market for automotive, industrial, infrastructure and IoT applications, enabling billions of connected, intelligent devices that enhance the way people work and live. Learn more at renesas.com. Follow us on LinkedIn, Facebook, X, YouTube and Instagram  (Remarks). All names of products or services mentioned in this press release are trademarks or registered trademarks of their respective owners.
Key word:
Release time:2025-05-14 14:21 reading:321 Continue reading>>
DENSO and ROHM Reach Basic Agreement to Establish a Strategic Partnership in the Semiconductor Field
  DENSO CORPORATION and ROHM Co., Ltd. are pleased to announce that the two companies have reached a basic agreement to establish a strategic partnership in the semiconductor field. This agreement follows discussions and considerations that began in September 2024.  Recently, the importance of semiconductors that support the electrification and intelligence of vehicles has been increasing significantly. This is driven by the development and spread of electric vehicles aimed at achieving carbon neutrality, as well as the realization of automated driving, which is expected to contribute to zero fatalities in traffic accidents.  DENSO and ROHM have a long-standing collaboration in the trade and development of automotive semiconductors. Going forward, both companies will integrate DENSO's advanced system construction capabilities in the automotive sector with ROHM's cutting-edge semiconductor technology, cultivated in the consumer market. This partnership will focus on enhancing the lineup of high-quality devices, particularly analog ICs, that support vehicle electrification and intelligence, and deepening collaboration in development. Additionally, in highly compatible fields within their semiconductor businesses, both companies will discuss broad collaboration. By globally supplying products created through this co-creation, both companies aim to contribute to technological innovation in the automotive field and realize a sustainable mobility society.  To further solidify this partnership, DENSO and ROHM will continue to consider strengthening their capital relationship.  DENSO CORPORATION President & CEO, Shinnosuke Hayashi  DENSO positions semiconductors as key devices to realize next-generation vehicle systems and has been deepening its cooperative relationships with semiconductor manufacturers that possess rich experience and knowledge. ROHM has a wide range of semiconductor lineups that are crucial for automotive electronics products, essential for vehicle intelligence and electrification. We are very pleased that the partnership with ROHM is progressing smoothly. By further deepening the collaboration between both companies and integrating DENSO's accumulated automotive technology and expertise, we believe we can contribute to the development of the mobility society through stable supply and enhanced product value.  ROHM Co., Ltd. President (Representative Director), Katsumi Azuma  We are very pleased to deepen our collaborative relationship with DENSO, a leader in technological innovation for the mobility society. This partnership not only strengthens our relationship as suppliers but also envisions broad collaboration in the semiconductor business of both companies. Initially, we will focus on the development of analog ICs related to next-generation systems such as electrification, automated driving, and connected vehicles. Furthermore, without narrowing the scope, we will integrate our respective technologies, knowledge, and assets across a wide range of fields to contribute to technological innovation and stable supply in the automotive industry.
Key word:
Release time:2025-05-13 15:12 reading:294 Continue reading>>
Renesas Unveils Complete Lithium-Ion Battery Management Platform with Pre-Validated Firmware
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced all-in-one solutions for managing lithium-ion battery packs in a wide range of battery-powered consumer products, such as e-bikes, vacuum cleaners, robotics and drones. With pre-validated firmware provided, the R-BMS F (Ready Battery Management System with Fixed Firmware) will significantly reduce the learning curve for developers, enabling rapid designs of safe, power-efficient battery management systems.  Designed for lithium-ion batteries in both 2-4 and 3-10 cell series (S), R-BMS F solutions include Renesas’ industry-leading fuel gauge ICs (FGICs), an integrated microcontroller (MCU) and an analog battery front end, pre-programmed firmware, software, development tools and full documentation – all available in complete evaluation kits that are now ready to ship.  Pre-programmed Firmware to Simplify Development  Firmware is essential in battery management systems as it is used to monitor batteries’ state of charge (SoC), state of health (SoH), current, and temperature, as well as actively balancing the voltages of the individual cells, and detect faults. In some cases, however, consumer electronics developers may lack the highly specialized expertise needed to develop control algorithms that keep the batteries operating in a safe temperature region and ensure adequate battery life over many charge/discharge cycles.  Renesas’ R-BMS F solutions include built-in, pre-tested firmware designed to work with the FGIC’s on-board MCU. The firmware includes critical pre-programmed functions to maximize battery life and ensure safe operation. These include cell balancing, current control, and voltage and temperature monitoring. For added flexibility, the battery management system lets developers set many parameters to meet specific requirements and adjust the solution for different cell chemistries via a graphical user interface (GUI), without the need for a full integrated development environment (IDE).  “One of the biggest bottlenecks for designing advanced power management solutions is the complex task of firmware development and validation,” said Chris Allexandre, Senior Vice President and General Manager of Power at Renesas. “Not everyone has the expertise or in-house resources to write their own algorithms. Our all-in-one R-BMS F battery management system eliminates this process and provides market-ready power solutions that work without requiring specialized technical knowledge of MCU programming or advanced battery management design.”  All-Inclusive Evaluation Kits Ready to Ship  Both R-BMS F solutions contain a full evaluation kit, which has all the hardware, software, tools and documentation required to start developing. The underlying hardware powering the R-BMS F is Renesas’ FGIC solution, which combines an analog battery front end and an ultra-low-power RL78 MCU into a single, small package. The analog portion provides accurate measurements of cell voltage, current and temperature, as well as controlling the external MOSFETs and converting analog data to digital signals. The digital section is where synchronous functions reside, including the main CPU, clocks, timers and serial interfaces. Also included in the evaluation kits are: pre-programmed firmware stored in embedded flash memory with the flexibility to set the battery pack and cell chemistry parameters; the USB System Management Bus (SMBus) interface; GUI-based software; cables to communicate with the host system; dedicated development tools for parameter setting; and full documentation, including schematics and an engineering bill of materials (eBOM). With these resources, developers can confidently innovate intelligent power management systems that safely monitor battery usage and provide longevity, while reducing their impact on the environment. Renesas plans to include turn-key R-BMS F solutions in all future FGICs.  2-4 Cell Series Solution (RTK0EF0163DK0002BU)  The R-BMS F for 2 to 4S cell (~8V to 16V) solutions targets small vacuum cleaners, robotic vacuums, consumer and medical devices and runs on Renesas’ RAJ240055 Li-ion battery FGIC. Renesas offers Smart Robot Vacuum Cleaner | Renesas by combining this FGIC with other devices from its portfolio.  3-10 Cell Series Solution (RTK0EF0136DK0002BU)  The R-BMS F for 3 to 10S cell (~12V to 40V) solutions runs on Renesas RAJ240100 and RAJ240090 Li-ion battery FGICs, with target applications including e-bikes, e-mobility, vacuum cleaners, robotics, drones and industrial, consumer and medical systems.  Renesas has combined these FGICs with other devices from its portfolio to offer Wall to Battery Low Power Energy Storage System and USB-PD All in One Battery and Charging Solution. These Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly.  Availability  Both R-BMS F solutions are available today in production volumes.
Key word:
Release time:2025-05-08 13:23 reading:361 Continue reading>>
Renesas Debuts New Group in Popular RA0 Series with Best-in-Class Power Consumption and Extended Temperature Range
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the RA0E2 microcontroller (MCU) Group based on the Arm® Cortex®-M23 processor. The new, cost-competitive devices offer extremely low power consumption, extended temperature range, and a wide variety of peripheral functions and safety features.  Renesas introduced the RA0 MCU series in 2024 and it has quickly become very popular with a wide range of customers due to its affordability and low power consumption. RA0E1 devices have already been adopted in consumer electronics, appliance and white goods, power tools, industrial monitoring and other applications.  RA0E2 MCUs are fully compatible with RA0E1 devices, offering pin-expansion while maintaining the same peripherals and ultra-low power. This compatibility lets customers re-use existing software assets. The new devices deliver industry-leading power consumption of only 2.8mA current in active mode, and 0.89 mA in sleep mode. In addition, an integrated High-speed On-Chip Oscillator (HOCO) enables the fastest wake-up time for this class of microcontroller. The fast wake-up enables the RA0 MCUs to stay in Software Standby mode more of the time, where power consumption drops to a minuscule 0.25 µA.  Renesas’ RA0E1 and RA0E2 ultra-low power MCUs deliver an ideal solution for battery-operated consumer electronics devices, small appliances, industrial system control and building automation application.  Feature Set Optimized for Low Cost  The RA0E2 devices have a feature set optimized for cost-sensitive applications. They offer a wide operating voltage range of 1.6V to 5.5V so customers don’t need a level shifter/regulator in 5V systems. The RA0 MCUs also integrate timers, serial communications, analog functions, safety functions and security functionality to reduce customer BOM cost. A wide range of packaging options is also available, including a tiny 5mm x 5mm 32-lead QFN.  In addition, the new MCU’s high-precision (±1.0%) HOCO improves baud rate accuracy and enables designers to forego a standalone oscillator. Unlike other HOCOs in the industry, it maintains this precision in environments from -40°C to 125°C. This wide temperature range enables customers to avoid costly and time-consuming “trimming,” even after the reflow process.  “The market reception for our RA0 Series has exceeded even our own high expectations,” said Daryl Khoo, Vice President of the Embedded Processing Marketing Division at Renesas. “The RA0E2 Group MCUs deliver the same ultra-low power and price point that have been so popular with our customers. The addition of extended temperature range and more memory opens up even more applications and use cases. We plan to further expand the RA0 product lineup, delivering optimal solutions for 8-16 bit MCU users transitioning to 32-bit MCUs.”  Key Features of the RA0E2 Group MCUs  Core: 32MHz Arm Cortex-M23  Memory: Up to 128KB integrated Code Flash memory and 16KB SRAM  Extended Temperature Range: Ta -40°C to 125°C  Timers: Timer array unit (16b x 8 channels), 32-bit interval timer (8b x 4 channels), RTC  Communications Peripherals: 3 UARTs, 2 Async UART, 6 Simplified SPIs, 2 I2C, 6 Simplified I2Cs  Analog Peripherals: 12-bit ADC, temperature sensor, internal reference voltage  Safety: SRAM parity check, invalid memory access detection, frequency detection, A/D test, output level detection, CRC calculator, register write protection  Security: Unique ID, TRNG, AES libraries, Flash read protection  Packages: 32- and 48-lead QFNs, 32-, 48-, and 64-pin LQFP  The new RA0E2 Group MCUs are supported by Renesas’ Flexible Software Package (FSP). The FSP enables faster application development by providing all the infrastructure software needed, including multiple RTOS, BSP, peripheral drivers, middleware, connectivity, networking, and security stacks as well as reference software to build complex AI, motor control and cloud solutions. It allows customers to integrate their own legacy code and choice of RTOS with FSP, thus providing full flexibility in application development. Using the FSP will ease migration of RA0E1 designs to larger RA0E2 devices if customers wish to do so.  Availability  The RA0E2 Group MCUs are available now, along with the FSP software and the RA0E2 Fast Prototyping Board. Samples and kits can be ordered either on the Renesas website or through distributors. More information on the new MCUs is available at renesas.com/RA0E2.  Renesas MCU Leadership  The world leader in MCUs, Renesas ships more than 3.5 billion units per year, with approximately 50% of shipments serving the automotive industry, and the remainder supporting industrial and Internet of Things applications as well as data center and communications infrastructure. Renesas has the broadest portfolio of 8-, 16- and 32-bit devices, delivering unmatched quality and efficiency with exceptional performance. As a trusted supplier, Renesas has decades of experience designing smart, secure MCUs, backed by a dual-source production model, the industry’s most advanced MCU process technology and a vast network of more than 250 ecosystem partners. For more information about Renesas MCUs, visit renesas.com/MCUs.
Key word:
Release time:2025-04-29 10:54 reading:408 Continue reading>>
Semikron Danfoss’ Module with ROHM’s latest 2kV SiC MOSFETs Integrated into SMA’s Large Scale Solar System
  SMA Solar Technology AG, a leading global specialist in photovoltaic and storage system technology, adopts Semikron Danfoss’ Module with ROHM’s latest 2kV SiC MOSFETs inside its new large scale solar system “Sunny Central FLEX”, a modular platform designed to streamline and enhance grid connections for large-scale photovoltaic installations, battery storage systems, and emerging technologies.  “ROHM’s new 2kV class SiC MOSFETs are designed to enable simple and highly efficient converter topologies for 1500V DC-links. It is developed with high reliability targets and cosmic radiation robustness – addressing the stringent conditions and extended converter lifetime requirements of the photovoltaic sector and beyond,” says Wolfram Harnack, President at ROHM Semiconductor GmbH. “The technology of our SiC device structure and integrated on-chip gate resistance eases device paralleling and simplifies high power module designs. The mass production has started,” adds Harnack.  Semikron Danfoss’ SEMITRANS® 20 has designed for high power applications and fast-switching operations, it represents the next generation of power modules for large converters. SEMITRANS® 20 with ROHM’s 2kV SiC MOSFETs is an integral part of SMA’s Sunny Central FLEX. “Semikron Danfoss and ROHM have collaborated for over a decade, focusing primarily on the implementation of silicon carbide (SiC) in power modules. More recently, we have teamed up to integrate silicon IGBTs as well”, says Peter Sontheimer, Senior Vice President of Semikron Danfoss’ Industry division.  “The new SEMITRANS® 20 offers simple, efficient solutions for 1500VDC applications. These modules are ideal for solar and energy storage inverters. Upcoming high-power electric truck chargers, as well as wind converters, will also benefit,” adds Sontheimer.  "The cooperation between SMA, Semikron Danfoss and ROHM is proof of how the seamless integration of innovative technologies creates the conditions for future-oriented energy projects," said Bernd Gessner, Product Manager Power Conversion Systems at SMA. "The demands on these solutions are higher than ever. SMA has decades of expertise and fulfills the highest requirements in terms of performance, reliability, durability and flexibility. The fact that Sunny Central FLEX meets these highest future-proof standards is also the result of the excellent cooperation with our partners who share the same commitment to excellence."  About SMA Solar Technology AG        As a leading global specialist in photovoltaic and storage system technology, the SMA Group is setting the standards today for the decentralized and renewable energy supply of tomorrow. SMA’s portfolio contains a wide range of efficient PV and battery inverters, holistic system solutions for PV and battery-storage systems of all power classes, intelligent energy management systems and charging solutions for electric vehicles and power-to-gas applications. Digital energy services as well as extensive services round off SMA’s range. SMA inverters installed throughout the world within the last 20 years with a total output of approximately 144 GW help avoid the emission of more than 64 million tons of CO2. SMA’s multi-award-winning technology is protected by more than 1,600 patents and utility models. Since 2008, the Group’s parent company, SMA Solar Technology AG, has been listed on the Prime Standard of the Frankfurt Stock Exchange (S92) and is listed on the SDAX index.  About Semikron Danfoss        Semikron Danfoss is a global technology leader in power electronics. Our product offerings include semiconductor devices, power modules, stacks and systems. In a world that is going electric, Semikron Danfoss technologies are more relevant than ever. With our innovative solutions for automotive, industrial and renewable applications we help the world utilize energy more efficiently and sustainably and thus to significantly reduce overall CO2 emissions – facing one of the biggest challenges today. We take care of our employees and create value for our customers by investing significantly in innovation, technology, capacity and service to deliver best-in-industry performance and for a sustainable future. Semikron Danfoss is a family-owned business, merged by SEMIKRON and Danfoss Silicon Power in 2022. We employ more than 3,500 people in 28 locations across the world. Our global footprint with production sites in Germany, Brazil, China, France, India, Italy, Slovakia and the United States ensures an unmatched service for our customers and partners. We offer more than 90 years of combined expertise in power module packaging, innovation and customer applications – making us the ultimate partner in power electronics.
Key word:
Release time:2025-04-29 10:49 reading:343 Continue reading>>
ROHM Develops New High Power Density SiC Power Modules Compact high heat dissipation design sets a new standard for OBCs
  ROHM has developed the new 4-in-1 and 6-in-1 SiC molded modules in the HSDIP20 package optimized for PFC and LLC converters in onboard chargers (OBC) for xEVs (electric vehicles). The lineup includes six models rated at 750V (BSTxxx1P4K01) and seven products rated at 1200V (BSTxxx2P4K01). All basic circuits required for power conversion in various high-power applications are integrated into a compact module package, reducing the design workload for manufacturers and enabling the miniaturization of power conversion circuits in OBCs and other applications.  In recent years, the rapid electrification of cars is driving efforts to achieve a decarbonized society. Electric vehicles are seeing higher battery voltages to extend the cruising range and improve charging speed, creating a demand for higher output from OBCs and DC-DC converters. At the same time, there is an increasing need in the market for greater miniaturization and lighter weight for these applications, requiring technological breakthroughs to improve power density - a key factor - while enhancing heat dissipation characteristics that could otherwise hinder progress. ROHM’s HSDIP20 package addresses these technical challenges that were previously becoming difficult to overcome with discrete configurations, contributing to both higher output and the downsizing of electric powertrains.  The HSDIP20 features an insulating substrate with excellent heat dissipation properties that suppresses the chip temperature rise even during high power operation. When comparing a typical OBC PFC circuit utilizing six discrete SiC MOSFETs with top-side heat dissipation to ROHM’s 6-in-1 module under the same conditions, the HSDIP20 package was verified to be approx. 38°C cooler (at 25W operation). This high heat dissipation performance supports high currents even in a compact package, achieving industry-leading power density more than three times higher than top-side cooled discretes and over 1.4 times that of similar DIP type modules. As a result, in the PFC circuit mentioned above, the HSDIP20 can reduce mounting area by approx. 52% compared to top-side cooled discrete configurations, greatly contributing to the miniaturization of power conversion circuits in applications such as OBCs.  Going forward, ROHM will continue to advance the development of SiC modules that balance miniaturization with high efficiency while also focusing on the development of automotive SiC IPMs that provide higher reliability in a smaller form factor.  Product Lineup  *1: Tc=25°C VGS=18V *2: Combines chips with different ON resistances  *3: Q1, Q4 pins *4: Q2, Q3, Q5, Q6 pins  Application Examples  Power conversion circuits like PFC and LLC converters are commonly used in the primary side circuits of industrial equipment, allowing the HSDIP20 to also contribute to the miniaturization of applications in both the industrial and consumer electronics fields.  ◇ Automotive systems  Onboard chargers, electric compressors and more.  ◇ Industrial equipment  EV charging stations, V2X systems, AC servos, server power supplies, PV inverters, power conditioners, etc.  Sales Information  Pricing: $100/unit (samples, excluding tax)  Availability: OEM quantities (April 2025)  Supporting Information  ROHM is committed to providing application-level support, including the use of in-house motor testing equipment. A variety of supporting materials are also offered such as simulations and thermal designs that enable quick evaluation and adoption of HSDIP20 products. Two evaluation kits are available as well, one for double-pulse testing and the other for 3-phase full bridge applications, enabling evaluation under close to actual circuit conditions.  For more information, please contact AMEYA360 or visit the contact page on ROHM’s website.  EcoSiC™ Brand  EcoSiC™ is a brand of devices that utilize silicon carbide, which is attracting attention in the power device field for performance that surpasses silicon. ROHM independently develops technologies essential for the advancement of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  ・EcoSIC™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  Power Factor Correction (PFC)  A circuit that enhances the power factor by shaping the waveform of input power in the power supply circuit. By using a PFC circuit, the input power is made closer to a sine wave (power factor = 1), improving power conversion efficiency. While PFC circuits typically rely on diode rectification, OBCs often employ active bridge rectification using MOSFETs or bridgeless PFC. This approach is favored because MOSFETs offer lower switching losses, and especially in high power PFCs, using SiC MOSFETs reduces heat generation and power losses.  LLC Converter  A type of resonant DC-DC converter known for its high efficiency with low noise power conversion. The name LLC comes from its basic configuration, which combines two inductors (L) and a capacitor (C) in the circuit. By forming a resonant circuit, switching losses are significantly reduced, making it ideal for applications requiring high efficiency, such as OBCs, power supplies for industrial equipment, and server power supplies.
Key word:
Release time:2025-04-24 17:23 reading:315 Continue reading>>
GigaDevice's GD5F1GM9 Series High-Speed QSPI NAND Flash Sets New Benchmark with Breakthrough Read Speeds for Accelerated Application Startup
  GigaDevice, a leading semiconductor company specializing in Flash Memory, 32-bit Microcontrollers (MCUs), Sensors, Analog products and solutions, announces the launch of its GD5F1GM9 high-speed QSPI NAND Flash, which features breakthrough read speeds and innovative Bad Block Management (BBM) functionality.  The GD5F1GM9 series combines the high-speed read performance of NOR Flash with the large capacity and cost-effectiveness of NAND Flash. These innovations address key industry challenges of slow response times and vulnerability to bad block interference associated with traditional SPI NAND Flash. The GD51GM9 launch will open new growth opportunities for SPI NAND Flash, making it the ideal choice for fast-boot applications in sectors such as security, industrial, and IoT.  The GD5F1GM9 series high-speed QSPI NAND Flash is built on a 24nm process node. The series supports both 3V and 1.8V operating voltages as well as high-speed read modes including Continuous Read, Cache Read, and Auto Load Next Page. Continuous Read and Auto Load Next Page modes are newer read features added on this series, offering users versatile read options to further accelerate code and data fetch. These read modes utilize the new parallel computation approach for its ECC (Error Correction Code) design, replacing the previous serial computation method. This innovation significantly reduces the calculation time for the built-in ECC.  The 3V version of the series achieves a continuous read rate of up to 83MB/s in Continuous Read mode, operating at a maximum clock frequency of 166MHz. The 1.8V version has a continuous read rate of up to 66MB/s and supports a maximum clock frequency of 133MHz. The results in GD5F1GM9’s read speeds are up to 3 times faster than traditional SPI NAND products at the same frequency. These design advantages improve data access throughput, reduce system boot time, and lower overall system power consumption.  As bad blocks from the factory are inherent issues in NAND Flash, the GD5F1GM9 incorporates an on-chip Advanced Bad Block Management (BBM) to ensure comprehensive functionality of Continuous Read mode. Continuous Read allows read access of the full memory array with a single Read command in aid of the executed BBM that link bad block addresses to good block addresses. Read access will then automatically skip the bad block due to the established link access to the remap and linked good physical block address.  From the factory, the GD5F1GM9 series guarantees the first 256 blocks are good blocks. While there will be bad blocks from the factory and possible new bad blocks may arise during usage that needs to be managed, the BBM feature can create a logical block address to the physical block address link, allowing users to swap and replace bad blocks and the associated access will be on a good block once the BBM link is setup.  The device can support up to 20 Look Up Table BBM Links to further compliment Continuous Read mode functionality. This not only significantly improves resource utilization but also simplifies system design.  “Currently, the generally slow read speed of SPI NAND Flash has become a major bottleneck in enhancing boot performance of key applications,” said Ruwei Su, GigaDevice vice president and general manager of Flash BU, "The launch of GD5F1GM9 series high-speed QSPI NAND Flash sets a new performance benchmark in the market. This series effectively addresses the read speed limitations of traditional SPI NAND Flash and offers a new solution for bad block management, making it an ideal alternative for NOR Flash users with growing capacity needs. In the future, GigaDevice will continue to refine its underlying technologies to provide customers with more efficient and reliable storage solutions."  The GD5F1GM9 series offers 1Gb capacity with 3V/1.8V voltage options and supports WSON8 8x6mm, WSON8 6x5mm, and BGA24 (5×5 ball array) 5x5 ball package options. For detailed information and product pricing, please contact your local sales representative.  About GigaDevice  GigaDevice Semiconductor Inc. (SSE Stock Code 603986) is a global leading fabless supplier. The company was founded in April 2005 and headquartered in Beijing, China, with branch offices in many countries and regions worldwide, providing local support at customers' fingertips. Committed to building a complete ecosystem with four major product lines – Flash memory, MCU, sensor and analog – as the core driving force, GigaDevice can provide a wide range of solutions and services in the fields of industrial, automotive, computing, consumer electronics, IoT, mobile, networking and communications. GigaDevice has received the ISO26262:2018 automotive functional safety ASIL D certification, IEC 61508 functional safety product certification, as well as ISO9001, ISO14001, ISO45001, and Duns certifications. In a constant quest to expand our technology offering to customers, GigaDevice has also formed strategic alliances with leading foundries, assembly, and test plants to streamline supply chain management. For more details, please visit: www.gigadevice.com  *GigaDevice and their logos are trademarks, or registered trademarks of GigaDevice Semiconductor Inc. Other names and brands are the property of their respective owners.
Key word:
Release time:2025-04-23 17:09 reading:370 Continue reading>>
BIWIN Spec Industrial-Grade Wide-Temperature eMMC Wins the Industrial Core
  Recently, the results of the 23rd Chinese Automation & Digitalization "New Quality Award" selection, hosted by gongkong®, were officially announced. BIWIN Spec, the industrial and automotive-grade storage brand under BIWIN, clinched the Industrial Core "New Quality" Award for its innovatively developed Industrial-Grade Wide-Temperature eMMC storage solution.  Backed by BIWIN’s technological expertise and competitive advantages in embedded storage sector, the award-winning TGE208/TGE218 series industrial-grade eMMCs are featured with industrial-grade controllers and NAND Flash, along with proprietary firmware architectures and in-house advanced packaging/testing and manufacturing processes, delivering exceptional performance, ultimate stability, and industrial-grade reliability.  Furthermore, the products are certified with over 200 rigorous validation tests through BIWIN’s automatic testing system, and also passed the HTOL and ELFR tests under JEDEC standards. Designed for consistent and stable operation in extreme environments, the products are widely applicable across diverse industrial scenarios, including smart security surveillance, data communication, industrial automation, rail transportation, smart power systems, smart healthcare, and IoT terminals.  In terms of technical specifications, the products strictly follow the eMMC5.1 standards, support the HS400 high speed mode (with data transfer rates up to 400MB/s), and deliver outstanding performance under industrial wide-temperature conditions ranging from -40℃ to +85℃. In addition, the pSLC firmware technical support is also enabled to enhance the capability for data retention, so as to meet the high-frequency read/write needs in industrial scenarios.  With aims to satisfy the 24/7 uninterrupted operation requirements of industrial equipment, the BIWIN eMMCs are also specifically built with five intelligent management functionalities: the Field Firmware Upgrade (FFU) for remote maintenance, Boot Partition for secure system loading, Replay Protected Memory Block (RPMB) for enhanced data security, idle data acceleration for optimized storage efficiency, and a health monitoring system equipped. Customers can monitor the storage unit’s operational status in real time through a customized interface and dynamically optimize adjustments based on specific application scenarios.  BIWIN has established stable and close partnerships with supply chain collaborators, providing customers with reliable supply assurances and comprehensive after-sales support throughout the product lifecycle. With years of technical R&D accumulation and an intelligent production and testing system, combined with tiered BOM (Bill of Materials) control and manufacturing process management, the products achieve higher reliability and sustained operational stability.
Key word:
Release time:2025-04-07 13:20 reading:438 Continue reading>>

Turn to

/ 82

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
model brand To snap up
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code