5G引爆厂商新一轮战役,高通还能当常胜将军?

Release time:2017-07-13
author:
source:孙永杰的ICT评论
reading:144

近日,通信行业知名的信息通信研究院面向外界发布了《5G经济社会影响白皮书》。

该报告中指出,作为通用目的技术,5G将从线上到线下、从消费到生产,从平台到生态,全面构筑经济社会数字化转型的关键基础设施,推动我国数字经济发展迈上新台阶。而面对未来移动数据流量的爆炸式增长,5G技术在用户体验速率、连接数密度、流量密度和能效四大关键能力上拥有突出的优势。具体来看,5G用户速率可达100Mbps至1Gbps,连接数密度可达100万个/平平方公里,流量密度达10Mbps/m2,而传输时延可至毫秒的量级。



作为第五代移动通信技术,5G将在未来的经济社会发挥巨大的潜力作用。据该报告测算结果显示,从产出规模来看,到2030年5G带动的直接产出和间接产出将分别达到6.3万亿元和10.6万亿元。按照2020年5G正式商用的时间表来计算,预计当年将带动约4840亿元的直接产出,2025年、2030年将分别增长到3.3万亿、6.3亿元。

在间接产出方面,2020年、2025年和2030年将分别带动1.2万亿元、6.3万亿元和10.6万亿元。而在经济增加值方面,电信、软件和信息技术服务业、通信设备行业的增加值率将属上乘。到2020年、2025年、2030年,5G拉动的GDP增长将分别达到4190亿、2.1万亿和3.6万亿。

正是基于上述5G的经济前景,今年国际电信联盟确定了5G的名称、愿景和时间表,我国也宣布在2020年实现中国5G商用,5G已然渐行渐近。面对这么诱人的5G机会,各大厂商均趋之若鹜,以望能够前瞻布局。那么问题来了,在之前2G、3G和现在的4G时代一直处于领先的高通能否在5G到来之际再次引领产业?

众所周知,5G与4G相比,最大的不同体现在对移动互联网的“加倍”支持,对海量物联网的支持,对高可靠低时延关键型任务的支持等,而这需要从空口技术、网络架构等方面实现革命性创新。因此,3GPP正在进行的5G NR标准化工作备受关注。据悉,第一版5G NR标准规范将于今年12月完成。

从技术角度,让5G NR全球标准变成现实非常复杂。5G NR必须满足一系列不断扩展、多种多样的连接需求,它不仅将连接人,还要在广泛的行业和服务中连接并控制机器、物体和终端。统一空口要灵活且敏捷地应用合适的技术、频谱和带宽,以此满足每个应用的需求并支持面向未来服务与终端类型的高效复用。5G NR还需要充分利用大量可用频谱监管范式和频段中的每一点频谱——从1 GHz以下低频到1 GHz至6 GHz中频和称为毫米波的高频。


高通工程技术副总裁庄思民博士(John Smee)在IMT-2020 5G峰会上发言


对此,高通工程技术副总裁庄思民博士(John Smee)在稍早前召开的5G峰会上表示,5G NR技术演进需要关键技术的支撑。其一是可扩展OFDM参数,因为5G将面向广泛的用例和商业机会,必须满足超高带宽、超低时延以及高可靠性,必须保证系统可扩展性;其二是多用户大规模MIMO技术,该技术可在多用户和高连接密度的蜂窝网络中提高频谱效率;其三是先进信道编码技术(如LDPC),可以提升数据速率和降低能耗;其四是独立TDD子帧,可降低时延,同时保证前向兼容;其五是毫米波的自适应波束成型及波束追踪技术。这些关键技术对于构建全球5G空口非常重要。而高通在上述方面无疑处在业内领先的位置。

以毫米波技术为例,高通一直致力于毫米波技术的研发,确保用户未来在手机上也能使用这一技术,甚至加速该技术能在2019年或2020年进行商用部署。届时,不仅能实现6GHz以下5G技术的商用,同时也能利用毫米波技术解决一系列的新挑战,比如车载或手持用户设备,以及多个支持多天线阵元的基站都能支持毫米波通信系统。毫米波另外一个很重要的使用场景是在室内,要实现毫米波的移动性,就需要克服因反射带来的墙壁阻挡或动态障碍。高通在这方面也做了很多工作,于2017 MWC期间,成功展示了在非视距环境下利用毫米波实现移动通信,成为全球首家成功展示非视距前提下移动毫米波的公司,使其可以作为6GHz以下5G技术的一个补充。

正如前述,频谱是5G部署的关键因素之一,不同地区、不同运营商拥有不同频段,要获得更多的5G频谱开展新业务需要长期的过程。与此同时,在新的频谱共享模式中,不同的地区将会拥有不同的频段,因此需要考虑通过什么样的技术能够实现频谱的共享,使多个运营商能够高效地在相同的频谱中共存。为此,高通采取了不同方法,实现了从一个非协调的系统到一个共享频谱的系统,来进行跨频段的协调和调用。为了让其变成现实,高通已经发布了其5G NR频谱共享原型系统,推动3GPP标准化并支持影响深远的试验。

正是基于上述创新和技术优势,高通已经推出完备的5G NR原型系统和试验平台,支持6GHz以下、频谱共享和28GHz移动化毫米波技术,属行业领先。这些符合3GPP NR相关规范的原型系统,可以帮助行业对3GPP相应的规范和技术进行测试,确保在2019/2020年商用部署时, 5G终端和基础设施符合标准,此外还将推进未来3GPP的5G NR相关规范前向兼容。基于此,高通联合全球范围内众多合作伙伴开展的5G NR相关试验,也将使用这些5G原型系统。比如,高通已经宣布与AT&T、中国移动、NTT docomo、SK 电讯、Telstra、沃达丰等全球主流运营商和合作伙伴开展5G NR试验。在中国,高通也早已与中国移动和中兴通讯宣布合作,开展5G NR规范的互操作测试和OTA外场试验,推动中国的5G发展。

众所周知,4G的不断演进和5G的发展是并行的,千兆级LTE对于5G移动体验至关重要,很多运营商也计划利用他们现有的4G网络进行5G网络部署。在这方面,高通也已经推出两代千兆级调制解调器产品——骁龙X16调制解调器和骁龙X20调制解调器,其中骁龙X16调制解调器和内置该芯片组的骁龙835移动平台,已经支持了全球首批千兆级LTE网络和终端的商用。此外,高通还在芯片、算法、射频前端和天线模块等各个方面发力,发展端到端的解决方案,为迎接5G的到来做好充分准备。

综上所述,尽管5G诱人的经济前景让厂商们趋之若鹜,但鉴于高通此前在2G、3G和4G时代在技术、专利、品牌影响力与合作关系持续的积累,尤其是对于5G前瞻性的技术研究和创新以及目前在5G方面已经取得的进展,其再次引领5G发展的可能性相当大。

Online messageinquiry

reading
Planning for security in 5G networks requires a whole new approach compared to previous-generation networks to protect network infrastructure, according to a new technical report on 5G architecture and security published by the U.K. government.With 5G rollouts planned in some form or another around the world this year, the very fact that the architecture opens up opportunities for multiple players to operate on the network (rather than just a single network operator) could significantly increase the attack surface for connected devices, autonomous vehicles, and other use cases flagged up for 5G. Hence, the report suggests that a whole new mobile security strategy is needed and makes four significant security-based recommendations that the authors believe will protect vital infrastructure."Since the age of 2G, mobile networks have been some of the most secure things on the planet, helped by the fact that each one is controlled by a single network operator," said Peter Claydon, project director of AutoAir, one of the 5G testbeds in the U.K. that contributed to the report. "5G opens up mobile networks, allowing network operators to provide 'slices' of their networks to customers. Also, customers’ data can be offloaded and processed at the edge of the network without going through the secure network core. This report is a timely reminder of the security challenges that these new features raise."Regius Professor Rahim Tafazolli, founding director of the 5G Innovation Centre at the University of Surrey, added, 'Performance risk in such a complex network means that we need to reconsider many of our digital security processes."The report was produced as part of the U.K.’s 5G Testbed and Trials program, a government initiative to ensure that the U.K. plays a key role in 5G development. Three of the six 5G testbeds contributed to the report, along with the University of Surrey’s 5G Innovation Centre. The three testbeds were AutoAir, which is testing transport use cases; 5G RuralFirst, which is testing the use of 5G to enhance rural communities, and the Worcestershire 5G Testbed, which is testing industrial use cases of 5G.Key highlights are the challenges and inevitable trade-offs between cost, security, and performance in the development and deployment of 5G. In a new environment of multiple use cases, each with different performance requirements, along with the expected introduction of new market players, alignment and cooperation between parties will be essential. In addition, systems will need to be "secure by design," and new approaches, including the use of artificial intelligence (AI), will be required.New ways will be required to predict and pre-validate 5G network connections, leveraging mobile AI-based autonomous network technologies — from mobile phones and smart industrial machines to health-monitoring devices and smart home consumer devices. The networks will need to quickly and efficiently recognize these devices and confirm that they are secure without compromising user experience and performance. The paper also recommends:A cross-layered process that will allow end-to-end security for critical services such as the transport and logistics, health and social care, Industry 4.0, and rural connectivity solutions.An organization that is tasked to help monitor and encourage good security-by-design practice and set out and document an approach to designing secure 5G networks, applications, and services.Further testing of standards and security capability using existing U.K. test beds.The report highlights the scale of the challenge. The International Telecommunication Union (ITU) vision for 5G outlines use cases with very diverse technical performance and system requirements, requiring mobile networks to interconnect with different non-3GPP network technologies. It says that this cannot be achieved by a single network operator in their own domain, and hence, secured and trusted network-to-network interoperability is essential.The 3GPP’s 5G specifications define interfaces for inter-network communications, but further work is necessary to evolve interface functionality, performance, and security. To realize seamless interoperability, effective partnerships will be necessary between different network operators and equipment owners, such as transport companies, rural and local communities and authorities, and publicly funded organizations. To achieve end-to-end security, network boundaries need to be secured across all borders.Adding to the complexity are interconnection of 3GPP and non-3GPP networks, new 5G use cases with diverse requirements, and new 5G technologies, including evolutionary approaches in the mobile network. This adds new security vulnerabilities with a significantly larger attack surface, making it essential to thoroughly evaluate the risks and vulnerabilities and identify work items to alleviate them.The various challenges to deploy secure 5G networks while meeting the requirements of different 5G use cases also creates a trade-off challenge between network performance and security. The combination of increased network-to-network complexity, end-to-end cross-layer system security, and critical applications will mean that conventional security methods will not be feasible.Hence, new technology will be required to meet these challenges to prevent conventional security approaches compromising the required 5G performance. Context-aware networks and AI can process context transfer patterns and correlate them with user, device, application, and security context metadata to make predictive decisions. This will assist the network to make sure that the system setup is one step ahead of the dynamics of the user equipment behavior and context, therefore predicting and pre-validating the required end-to-end security and connection in advance of the device requesting the service.
2019-01-08 00:00 reading:489
Sivers IMA, developer of mmWave products, said that it will jointly develop a 5G base station chip with RF power product company Ampleon, which it expects to bring to market by the end of 2019.Both companies will jointly develop the product, and Ampleon will part-fund the Sivers IMA development by approximately MSEK 3.5 (about $400K). Ampleon will be the main sales channel to Tier-One OEMs for the product resulting from the project.Ampleon supplies sub-6-GHz RF power solutions for 4G and 5G cellular base stations, with the top macro cell telecom network OEMs among its customers. The new chip is being developed in response to demand from top-tier OEMs for state-of-the-art mmWave technology for their next-generation 5G base stations. The partnership aims to bring mmWave components to the market by the end of 2019.Anders Storm, CEO of Sivers IMA, said that it has already been working with Ampleon over the last year as part of a 5G consortium along with Fujikura and other undisclosed partners, which has resulted in a 28-GHz 5G transceiver chip, the TRX BF02, that is now ready for customer testing. The current chip will be able to address the small cell and customer premises equipment (CPE) market for fixed wireless access and some other use cases. The new chip development takes this one step further, to address specific demands from top-tier OEMs, to also offer a solution for 5G base stations.WiGig chip ready for volume productionSiver IMA also announced that its TRX BF01 WiGig chip is ready for volume production, having qualified to the JEDEC standard JESD47JE (“stress-test-driven qualification of integrated circuits”), a global industry standard to ensure component reliability. Qualification tests consist of various stress-related tests, including simulated use over a long period of time (more than 10 years in normal use) and resistance to cold, heat, voltage, humidity, and electrostatic discharge. The TRX BF01 is a wireless multi-gigabyte chip that can be used for next-generation unlicensed 5G for fixed wireless access (FWA) to the home or mesh networks for backhaul. Sivers IMA claims that it is the only chip that can use the entire unlicensed 5G band all the way from 57 GHz to 71 GHz, a band now available throughout the United States and England to be used as free and unlicensed 5G spectrum.The TRX BF01 has already sold to Cambridge Communication Systems (CCS), which is now building unlicensed 5G systems around England in multiple locations. This month, CCS announced that its Metnet 60G unlicensed mmWave wireless solution delivering up to 12 Gbps per radio is now live in the historic center of Bath in England, delivering gigabit backhaul to support interactive 5G smart tourism applications and enhanced visual experiences using augmented reality (AR) and virtual reality (VR) technology.The deployment and go-live of CCS’s Metnet 60-GHz self-organizing mesh radios across the center of Bath is part of the 5G testbed program in the U.K. The test network is being delivered by key partners — including CCS, BT, Zeetta, InterDigital, and University of Bristol Smart Internet Lab — to demonstrate self-provision of 5G and Wi-Fi plus mmWave backhaul capabilities from CCS. The network demonstrates innovative use of the new 57- to 71-GHz unlicensed band and highlights the huge potential for the 14 GHz of spectrum — recently opened up by U.K. regulator Ofcom — for enabling the delivery of ubiquitous high-speed connectivity through gigabit 5G fixed wireless access services
2019-01-07 00:00 reading:416
Keysight Technologies today released the results of the Keysight 2018 State of 5G survey, which reveals that companies primarily invest in 5G technology to secure market leadership, meet customer demand, and take advantage of flexible and scalable networks.The Keysight 2018 State of 5G Survey shows more than half (54 percent) of companies surveyed are already adopting 5G technologies with 46 percent citing securing market leadership early in the 5G lifecycle as the primary driver for their investments. And, more than two thirds of respondents said they are actively seeking 5G test solutions to accelerate the development or rollout out of 5G technology.“To meet customer demand and establish market leadership, equipment manufacturers and service providers need early access to 5G test tools and capabilities,” said Kailash Narayanan, vice president and general manager of Wireless Devices and Operators at Keysight Technologies. “Keysight’s close collaborations with industry consortia and market leaders, deep technical experts, and end-to-end 5G test solutions are empowering the mobile industry to accelerate 5G product design development and commercialization.”Most respondents (63 percent) of the Keysight survey expect higher reliability and lower latency to create the biggest impact from 5G technology. These aspects are important to address new business opportunities. Respondents indicated that the top three benefits of implementing 5G technology are faster networks, greater IoT enablement, and connected car proliferation.By leveraging new and existing technologies including wider bandwidths in millimeter-wave frequencies, massive MIMO and virtualized networks, 5G will deliver a multitude of benefits to meet customer demand across a wide range of vertical industries.“The fact that many respondents are looking for test solutions means that those inventing and deploying the technology want to ensure their implementations perform as expected while securing a market leadership position,” stated Roger Nichols, 5G program manager at Keysight Technologies. “Many of these technologies, or combinations of technologies, are new to the radio communications world, which is why the industry is looking for tools to help them analyze, design, measure, and validate designs that rely on these technologies.”
2018-11-28 00:00 reading:302
A new report from International Data Corporation (IDC) presents IDC's inaugural forecast for the worldwide 5G network infrastructure market for the period 2018–2022. It follows the release of IDC's initial forecasts for Telecom Virtual Network Functions (VNF) and Network Functions Virtualization Infrastructure (NFVI) in September and August 2018, respectively.With the first instances of 5G services rolling out in the fourth quarter of 2018, 2019 is set to be a seminal year in the mobile industry. 5G handsets will begin to hit the market and end-users will be able to experience 5G technology firsthand.From an infrastructure standpoint, the mobile industry continues to trial innovative solutions that leverage new spectrum, network virtualization, and machine learning and artificial intelligence (ML/AI) to create new value from existing network services. While these and other enhancements will play a critical role, 5G NR represents a key milestone in the next mobile generation, enabling faster speeds and enhanced capacity at lower cost per bit. Even as select cities begin to experience 5G NR today, the full breadth of 5G's potential will take several years to arrive, which will require additional standards work and trials, particularly related to a 5G NG core.In addition to 5G NR and 5G NG core, procurement patterns indicate communications service providers (SPs) will need to invest in adjacent domains, including backhaul and NFVI, to support the continued push to cloud-native, software-led architectures.Combined, IDC expects the total 5G and 5G-related network infrastructure market (5G RAN, 5G NG core, NFVI, routing and optical backhaul) to grow from approximately $528 million in 2018 to $26 billion in 2022 at a compound annual growth rate (CAGR) of 118%. IDC expects 5G RAN to be the largest market sub-segment through the forecast period, in line with prior mobile generations."Early 5G adopters are laying the groundwork for long-term success by investing in 5G RAN, NFVI, optical underlays, and next-generation routers and switches. Many are also in the process of experimenting with the 5G NG core. The long-term benefit of making these investments now will be when the standards-compliant SA 5G core is combined with a fully virtualized, cloud-ready RAN in the early 2020s. This development will enable many communications SPs to expand their value proposition and offer customized services across a diverse set of enterprise verticals through the use of network slicing," says Patrick Filkins, senior research analyst, IoT and Mobile Network Infrastructure.The report, Worldwide 5G Network Infrastructure Forecast, 2018-2022 (IDC #US44392218), presents IDC's inaugural forecast for the 5G network infrastructure market. Revenue is forecast for both the 5G RAN and 5G NG Core segments and each of the three related sub-segments (NFVI, Routing Backhaul, and Optical Backhaul). The report also provides a market overview, including drivers and challenges for communications service providers and advice for technology suppliers.
2018-11-15 00:00 reading:460
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
TXB0108PWR Texas Instruments
CD74HC4051QPWRQ1 Texas Instruments
TPIC6C595DR Texas Instruments
PCA9306DCUR Texas Instruments
TL431ACLPR Texas Instruments
TPS61021ADSGR Texas Instruments
model brand To snap up
TPS5430DDAR Texas Instruments
ULQ2003AQDRQ1 Texas Instruments
TPS61256YFFR Texas Instruments
TPS61021ADSGR Texas Instruments
TPS63050YFFR Texas Instruments
TXS0104EPWR Texas Instruments
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
Information leaderboard
  • Week of ranking
  • Month ranking
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.