铜箔涨!电子布涨!木浆纸涨!PCB板材大厂通知新一轮涨价

发布时间:2017-07-12 00:00
作者:Ameya360
来源:网络整理
阅读量:670

  电子元器件行情维持高景气,上游原材料涨价效应持续。基础电子材料覆铜板(CCL)供需紧张,新一轮涨价潮袭来。由于制造覆铜板的原材料电解铜箔、木浆纸、桐油及玻纤布、树脂价格大幅上涨,各大覆铜板供应商纷纷提高出货价格。

  PCB板材CCL覆铜板新一轮涨价通知

  截至目前,历时一年的上游原材料涨价不但没有停止的迹象,反而有愈演愈烈之势。不过,年中的这一轮PCB板材涨价潮不同于年初的疯狂。最近,又有基材厂以及板材厂发布调价通知:

  2017年7月5日,国内山东金宝发布铜箔涨价通知

  2017年7月7日建滔纸板上调单价10元/张

  2017年7月10日明康绝缘玻纤CCL上调5元/张

  威利邦从7月13日起,铜箔上调2000元/吨,板料上调5元/张

  据悉,金安国纪板料上调3%,裕丰板料上调5%,普源取消3%优惠。

  星源航天PCB板材XPC/FR-1,涨3元人民币

  铜箔出货价格上调,2000元/吨;电解铜价格上涨,铜箔每吨上调1000元,外销每吨上调130美元;2017年7月份电解铜箔基准价格为:35um,内销74000元/吨,外销10370元/吨。

  ?

  影响力最大的覆铜板大厂建滔再次发出涨价通告,意味着上下游供应链也将全面跟进。如上可知,铜箔紧缺、CCL紧缺、PCB交货困难…持续了一年的铜箔、CCL涨价又开始影响整个PCB行业。PCB的基材主要是覆铜板CCL,CCL占PCB材料成本约40%左右,而CCL当中,铜箔占CCL成本30%(厚板)/50%(薄板)、玻纤布占40%(厚板)/25%(薄板)、环氧树脂15%左右。

  去年8月起,CCL上游铜箔受锂电铜箔供需紧张的影响开始涨价,玻纤布也自2016年四季度开始涨价。从今年2月份开始,玻纤行业的几家龙头公司率先揭开玻纤纱窑冷修序幕,随后6月,CCL最大原材料供货商建滔积层板表示冷修一座年产5万吨的纱窑,而一个窑炉的维修周期大约在半年左右。木浆纸涨价频率也越来越高,甚至一周之内能涨两次,每一次的涨价幅度都在每吨300元左右。目前,玻璃纤维布、铜箔、木浆纸、桐油、树脂都处于价格高位,2017年年中覆铜板进入涨价周期。

  目前国内CCL产值稳居世界第一,刚性覆铜板中 FR-4 环氧玻纤布基覆铜板是目前PCB中用量最大、应用最广的产品。中国十二大覆铜箔板厂商:生益科技、金安国纪、金宝电子、华正新材、上海南亚、腾辉电子、广州宏仁、超声电子、威利邦电子、松下电子材料、龙宇电子、山东金鼎。

  本轮涨价行情PCB主要材料价格涨幅情况

  铜箔

  制造敷铜板的关键材料,必须有较高的导电率及良好的焊接性。要求铜箔表面不得有划痕、砂眼和皱褶,金属纯度不低于99.8%,厚度误差不大于±5um。按照部颁标准规定,铜箔厚度的标称系列为18、25、35、70和105um。我国目前正在逐步推广使用35um厚度的铜箔。铜箔越薄,越容易蚀刻和钻孔,特别适合于制造线路复杂的高密度的印制板。

  前几年,铜箔加工价由于相互争夺,竞相降价,造成经常在盈亏平衡点或以下亏损的情况下进行,使国内外的一些生产铜箔的企业破产、停业或转产,导致铜箔行业集中度进一步提高。

  行情:2015年底开始涨价持续至今,价格上涨超过30%,加工费上涨超过60%,总体接近翻倍。

  覆铜板

  覆铜板CCL,主要用于印制电路(PCB),担负着PCB导电、绝缘、支撑三大功能,是电子工业的基础。CCL由增强材料(木浆纸或玻纤布等),浸以树脂,单面或双面覆以铜箔,经热压而成。下游为PCB线路板,终端产品则分布在集成电路各行各业,包括航空、航天、遥感、遥测、遥控、通讯、计算机、工业控制、家用电器、高级儿童玩具等电子产品。

  覆铜板CCL与PCB厂商长期挣扎在底层,谁也没想到车用锂电池横空出世,这一轮原材料上涨周期如此迅猛和持久,这次涨价潮更多是电子铜箔产能转为锂电铜箔引发。由于电解铜箔新的产能投产周期需要2-3年,故在未来1-2年内,CCL与PCB用铜箔短缺将是一种常态。

  行情:涨价将集中在下半年,相比上半年各类型30%-70%不等,FR-4平均涨幅40%-50%不等。

  电子布、树脂

  以玻璃纤维布基双面覆铜板为例,其主要原材料为铜箔、玻璃纤维布、树脂PCB的性能、品质、制造中的加工性、制造水平、制造成本以及长期可靠性等,很大程度上取决于所用的覆铜板基板材料。

  电子级玻璃纤维布,这些年来也一直处在无利可图或亏损的状态下,造成一些电子级玻璃纤维布厂的停产或减产。最近又获悉国内外不少生产电子级玻璃纤维布的企业在停产修炉,而一个窑炉的维修周期大约在半年左右,这预示着不久的将来电子级玻璃纤维布的供应量也会剧减,随之而来的一定是电子级玻璃纤维布的涨价。

  行情:电子布2016年下半年开始涨价,接近翻倍。环氧树脂2016年下半年开始涨价,目前上涨25%。

  附:2016年部分覆铜板厂的提价情况

  原材料新一轮上涨,PCB产业链如何突围?

  从2016下半年开始至今,PCB上游原材料覆铜板CCL出现涨价、供货不足等现象,一些中小型PCB产业链厂商受成本提升、下游需求低迷、议价困难的影响,逐渐被挤出市场,行业向资金充足的大厂集中。

  有过年初第一轮涨价经验,部分PCB厂商提前做了准备,实际供应并没有那么紧张。板材价格只占PCB总价格的1/3左右,铜箔价格对板材价格影响的比重远大于PCB价格,PCB市场处于长期的恶性竞争,龙头大厂的产品涨幅其实并不高。这一轮涨价主要是覆铜板厂商可以将玻纤布、木浆纸的涨价转嫁给下游。

  由于原材料涨价,中小型PCB企业对订单货款支付进行了要求,一改以前先发货后收款的模式,过渡到款到发货,以求快速回笼资金。同时,板材上涨对现金需求量增大,造成资金链紧张,中小型PCB厂商减少了接单。

  随着新能源汽车、手机、LED小间距、通讯基站、服务器等各大细分电子市场需求旺盛,PCB行业行情逐渐回暖,尤其在HDI、柔性电路板、IC载板以及软硬结合板等高端产品中,需求连年增长。而传统占 比较大的单/双面板、多层板不仅增速放缓而且有衰减迹象。

  虽然目前国内CCL产值稳居世界第一,但是CCL高端产品依然掌握在欧美和日本生产几家公司手中,如ISOLA,HITACHI,ROGERS,PANASONIS,MGC等公司。同时生产设备如真空压机、液压冲床、阴极辊设备等精密设备绝大部分依赖进口;上游原材料如玻纤布、有机纤维无纺布、高性能树脂等质量稳定较世界先进水平也有一定差距。所以目前国内与美日等覆铜板强国技术差距较大,产品性能也属于中低端产品,附加值低。

  国产PCB产业链应该抓住这个时机,不断提升自己的品质,精益求精,提升良率,降低成本,避免恶性竞争,突破重围高端PCB制造。从长远来看,原材料涨价会加速清洗没有竞争力的中小微企业,让市场进一步集中,将促使行业回归理性,有利于产业链健康发展。

  近年来,我国已逐渐成为全球印制电路板的主要生产基地,已经形成了以珠三角地区、长三角地区为核心区域的PCB产业聚集带。近年来,随着沿海地区劳动力成本的上升,部分PCB企业开始将产能迁移到基础条件较好的中西部城市,如湖北黄石、安徽广德、四川遂宁等地。据Prismark预测,到2020年,中国PCB行业产值将达310.95亿美元,占全球PCB行业总产值的比重为50.99%。

在线留言询价

相关阅读
  The growing complexity of electronic designs is challenging the PCB manufacturing industry to innovate PCB inspection and testing methodologies. To bring out reliable products with maximum yield, a variety of inspection and test methods are employed during the PCB manufacturing process. In-circuit testing (ICT) is used to detect flaws in manufacturing processes and components. It offers high fault coverage and quick test throughput as compared to other available test methodologies. The ICT diagnostic accuracy is exceptional with low incorrect fail rates.  The introduction of the ICT system shifted the focus from the functionality testing of the PCB to the testing of components’ functionality and the integrity of the assembly process. This largely simplified the test pattern generation as the understanding of complex board functionality was eliminated for the programmer. A bed-of-nails test fixture used in the ICT method allows electrical test access to every net on the PCB and enables stimulating and measuring each component independently. This method has significantly reduced the time to generate test vectors and has improved the quality of the test coverage.  Elements of In-Circuit Test:  There are multiple types of ICT machines available in the market. Based on the test process, types of PCBs, and production volume you can choose the machine for your requirement. The basic elements of an ICT machine are as follows:  In-circuit tester: A bed-of-nails used as drivers and sensors that are inserted on pins of the device under test (DUT). They are used to apply voltage and current to the device pins to measure electrical parameters like impedance, capacitance, and resistance of the circuit.  Fixture: A fixture is designed specifically for a PCB and acts as an interface between the board and the In-circuit tester. It connects the test stimulus and monitoring points to the corresponding pins on the board through bed-of-nails.  Software: It is the set of test vectors generated specific to a board based on the type of tests to be done. It also provides control of the test process by collecting data from the probes. A pass or fail criteria is generated and applied while testing the PCBs. Test reports are generated that can assist in troubleshooting the faults.  Apart from the standard ICT machines, there are some advanced variants like Flying probe testers that can accommodate board updates by changing software, Cable form testers optimized to test cables, and Manufacturing defect analyzers that can spot defects like short and open circuits on the printed circuit board assembly.  Faults detected using ICT machines  The test coverage offered by the in-circuit tester is diverse. Manufacturers perform both power-off and power-on tests using ICT machines.  PCB defects detected in power-off mode are:  • Shorts between component pins and traces  • Resistor values  • Missing passive or analog parts  • Correct jumper settings  • Opens with no electrical connectivity  • Lifted leads  • Solder bridge  • BGA shorts and opens  Also, PCB defects captured during power-on mode are:  • Capacitance and inductance values  • Misorientation of mounted analog and digital parts  • Current gain value (beta) of the transistors  • Timing parameters of digital components  • Programming error of memory devices       Merits of in-circuit testing  ICT has made PCB testing easier by offering several advantages as below:  Easy program generation without the need to understand the board functionality has significantly reduced the test development time.  Since the setup can access all nets and component pins of the circuit board, the test coverage is maximum as compared to other PCB test methods.  Minimal scope for operator error as the manual intervention required is limited.  Quick fault detection and simple interpretation of error saves test and debug time for the operator.  Detects both assembly and functional faults of the PCB.  Software can operate on both UNIX and windows OS  Many tests performed in power-off mode provide a safer testing method for PCBs and hence reduced damage.  Once installed, ICT setups require minimal maintenance as they are robust and operate reliably for years.  Development in ICT systems  There are several improvements in the latest ICT systems. The possible erosion of test point access on PCBs, diverse test case requirements for products, and demand for high yield in volume productions are addressed. With the development in test strategies, the In-circuit test method is also progressing to provide excellent test coverage for PCB assemblies.  ICT vendors are offering scalable ICT test systems to satisfy diverse test requirements in a single compatible platform. For addressing high-volume manufacturing requirements, some ICT systems support parallel testing of components on the board. High-accuracy probe-fixturing technologies are available today that can establish smaller yet reliable test points.  The cost of the test fixture is quite high and the profit depends on the build volume. It is more suitable for medium to high-volume PCB production. High board complexity and dimensions will add to the cost as the fixture density and size also increase. But the reliability and test coverage offered by this technique compensates for the other drawbacks.  Compared to the flying probe test method, the In-circuit test is faster. Its ability to test for both assembly and functional defects makes it a better choice in large-volume testing. ICT can perform sophisticated tests specified in the Joint Test Action Group (JTAG) standards. Since the fixtures are built specifically for the test boards, it has to be done only after the PCB layout is finalized. The complexity involved in building the test fixtures calls for a substantial amount of time and money from the overall production budget.  Conclusion  To identify the best test strategy for your PCB assembly, it is necessary that you collaborate with an experienced contract manufacturer. They can offer guidance based on your specific needs with a complete understanding of the test strategies. For prototypes or low-volume PCB assembly, ICT is not recommended. The PCB must be in the production phase with a complete design freeze. It is ideal to build test fixtures for production PCBs since there are no re-spins expected.  Also, to recover the cost of test infrastructure, it is ideal to use ICT in bulk PCB productions.
2023-01-20 13:18 阅读量:1504
  在设计PCB(印制电路板)时,需要考虑的一个最基本的问题就是实现电路要求的功能需要多少个布线层、接地平面和电源平面,而印制电路板的布线层、接地平面和电源平面的层数的确定与电路功能、信号完整性、EMI、EMC、制造成本等要求有关。对于大多数的设计,PCB的性能要求、目标成本、制造技术和系统的复杂程度等因素存在许多相互冲突的要求,PCB的叠层设计通常是在考虑各方面的因素后折中决定的。高速数字电路和射须电路通常采用多层板设计,影响PCB叠层设计的有哪些因素呢?  1、分层  在多层PCB中,通常包含有信号层(S)、电源(P)平面和接地(GND)平面。电源平面和接地平面通常是没有分割的实体平面,它们将为相邻信号走线的电流提供一个好的低阻抗的电流返回路径。信号层大部分位于这些电源或地参考平面层之间,构成对称带状线或非对称带状线。多层PCB的顶层和底层通常用于放置元器件和少量走线,这些信号走线要求不能太长,以减少走线产生的直接辐射。  2、确定单电源参考平面(电源平面)  使用去耦电容是解决电源完整性的一个重要措施。去耦电容只能放置在PCB的顶层和底层。去耦电容的走线、焊盘,以及过孔将严重影响去耦电容的效果,这就要求设计时必须考虑连接去耦电容的走线应尽量短而宽,连接到过孔的导线也应尽量短。例如,在一个高速数字电路中,可以将去耦电容放置在PCB的顶层,将第2层分配给高速数字电路(如处理器)作为电源层,将第3层作为信号层,将第4层设置成高速数字电路地。  此外,要尽量保证由同一个高速数字器件所驱动的信号走线以同样的电源层作为参考平面,而且此电源层为高速数字器件的供电电源层。  3、确定多电源参考平面  多电源参考平面将被分割成几个电压不同的实体区域。如果紧靠多电源层的是信号层,那么其附近的信号层上的信号电流将会遭遇不理想的返回路径,使返回路径上出现缝隙。对于高速数字信号,这种不合理的返回路径设计可能会带来严重的问题,所以要求高速数字信号布线应该远离多电源参考平面。  4、确定多个接地参考平面(接地平面)  多个接地参考平面(接地层)可以提供一个好的低阻抗的电流返回路径,可以减小共模EMl。接地平面和电源平面应该紧密耦合,信号层也应该和邻近的参考平面紧密耦合。减少层与层之间的介质厚度可以达到这个目的。  5、合理设计布线组合  一个信号路径所跨越的两个层称为一个“布线组合”。最好的布线组合设计是避免返回电流从一个参考平面流到另一个参考平面,而是从一个参考平面的一个点(面)流到另一个点(面)。而为了完成复杂的布线,走线的层间转换是不可避免的。在信号层间转换时,要保证返回电流可以顺利地从一个参考平面流到另一个参考平面。在一个设计中,把邻近层作为一个布线组合是合理的。如果一个信号路径需要跨越多个层,将其作为一个布线组合通常不是合理的设计,因为一个经过多层的路径对于返回电流而言是不通畅的。虽然可以通过在过孔附近放置去耦电容或者减小参考平面间的介质厚度等来减小地弹,但也非一个好的设计。  6、设定布线方向  在同一信号层上,应保证大多数布线的方向是一致的,同时应与相邻信号层的布线方向正交。例如,可以将一个信号层的布线方向设为"Y轴”走向,而将另一个相邻的信号层布线方向设为“X轴”走向。  7、采用偶数层结构  从所设计的PCB叠层可以发现,经典的叠层设计几乎全部是偶数层的,而不是奇数层的,这种现急是由多种因素造成的,如下所示。  从印制电路板的制造工艺可以了解到,电路板中的所有导电层救在芯层上,芯层的材料一般是双面覆板,当全面利用芯层时,印制电路板的导电层数就为偶数。  偶数层印制电路板具有成本优势。由于少一层介质和覆铜,故奇数层印制电路板原材料的成本略低于偶数层的印制电路板的成本。但因为奇数层印制电路板需要在芯层结构工艺的基础上增加非标准的层叠芯层黏合工艺,故造成奇数层印制电路板的加工成本明显高于偶数层印制电路板。与普通芯层结构相比,在芯层结构外添加覆铜将会导致生产效率下降,生产周期延长。在层压黏合以前,外面的芯层还需要附加的工艺处理,这增加了外层被划伤和错误蚀刻的风险。增加的外层处理将会大幅度提高制造成本。  当印制电路板在多层电路黏合工艺后,其内层和外层在冷却时,不同的层压张力会使印制电路板上产生不同程度上的弯曲。而且随着电路板厚度的增加,具有两个不同结构的复合印制电路板弯曲的风险就越大。奇数层电路板容易弯曲,偶数层印制电路板可以避免电路板弯曲。  在设计时,如果出现了奇数层的叠层,可以采用下面的方法来增加层数。  如果设计印制电路板的电源层为偶数而信号层为奇数,则可采用增加信号层的方法。增加的信号层不会导致成本的增加,反而可以缩短加工时间、改善印制电路板质量。  如果设计印制电路板的电源层为奇数而信号层为偶数,则可采用增加电源层这种方法。而另一个简单的方法是在不改变其他设置的情况下在层叠中间加一个接地层,即先按奇数层印制电路板布线,再在中间复制一个接地层。  在微波电路和混合介质(介质有不同介电常数)电路中,可以在接近印制电路板层叠中央增加一个空白信号层,这样可以最小化层叠不平衡性。  8、成本考虑  在制造成本上,在具有相同的PCB面积的情况下,多层电路板的成本肯定比单层和双层电路板高,而且层数越多,成本越高。但在考虑实现电路功能和电路板小型化,保证信号完整性、EMl、EMC等性能指标等因素时,应尽量使用多层电路板。综合评价,多层电路板与单双层电路板两者的成本差异并不会比预期的高很多。
2022-12-22 16:54 阅读量:1584
    PCB 设计过程是由一系列工业设计步骤组成,是保证大批量电路板产品质量、减少故障排查的关键环节。PCB 是工业电子产品设计的基础。无论是小批量制作,还是大规模生产的消费电子,几乎所有的设计技术中都包含有 PCB 设计。由于设计过程错综复杂,很多常见的错误会反复出现。下面罗列出在 PCB 设计中最常见到的五个设计问题以及相应的对策。    01 管脚错误    串联线性稳压电源比起开关电源更加便宜,但电能转效率低。通常情况下,鉴于容易使用和物美价廉,很多工程师选择使用线性稳压电源。但需要注意,虽然使用起来很方便,但它会消耗大量的电能,造成大量热量扩散。与此形成对比的是开关电源设计复杂,但效率更高。然而需要大家注意的是,一些稳压电源的输出管脚可能相互不兼容,所以在布线之前需要确认芯片手册中相关的管脚定义。    02 布线错误    设计与布线之间的比较差异是造成 PCB 设计最后阶段的主要错误。所以需要对一些事情进行重复检查,比如器件尺寸,过孔质量,焊盘尺寸以及复查级别等。总之需要对照设计原理图进行重复确认检查。    03 腐蚀陷阱    当 PCB 引线之间的夹角过小(呈现锐角)的时候就可能形成腐蚀陷阱(Acid Trap)。这些锐角连线在电路板腐蚀阶段可能残存腐蚀液从而将该处的敷铜更多的去除,从而形成卡点或者陷阱。后期可能造成引线断裂,形成线路开路。现代制作工艺由于使用了光感腐蚀溶液之后,这种腐蚀陷阱现象大大减少了。    04 立碑器件    在利用回流工艺焊接一些小型表贴器件的时候,器件会在焊锡的浸润下形成单端翘起现象,俗称“立碑”。这种现象通常会由不对称的布线模式造成,使得器件焊盘上热量扩散不均匀 。使用正确的 DFM 检查可以有效缓解立碑现象的产生。    05 引线宽度    当 PCB 引线的电流超过 500mA 的时候,PCB 最先线径就会显得容量不足。通常的厚度和宽度,PCB表面的导线比起多层电路板内部导线通过更多的电流,这是因为表面引线可以通过空气流动进行热量扩散。线路宽度也与所在层的铜箔厚度有关系。大多数 PCB 生产厂家允许你选择 0.5 oz/sq.ft 到 2.5 oz/sq.ft 不同厚度的铜箔。
2022-10-26 09:35 阅读量:1822
    时钟(Clock)在一般SoC电路上是必不可少的,精准的时钟通常由晶振提供,晶振很难集成到芯片中去,而是作为分立元件设计在PCB上。它就像是人的心脏,如果时钟出错了,整个电路或者通信就会发生问题。    比如,16MHz晶振给一个2.4G蓝牙芯片提供参考时钟,如果16MHz出现频偏,比如偏-48ppm(频率为15.999223MHz),由于射频是参考时钟倍频上去的,也会出现-48ppm的频偏(蓝牙频点变成2,399,883,450Hz,约100KHz的频偏),造成蓝牙与标准频率的对端无法通信。    因此一个好的时钟电路是非常必要的,此篇文章对时钟电路中的晶振电路layout简单做一下阐述。    对于晶振电路,我们需要从几个方面考虑设计:    降低寄生电容的不确定性    降低温度的不确定性    减少对其他电路的干扰    设计注意点:    1. 晶振尽量靠近芯片,保证线路尽量短,防止线路过长导致串扰以及寄生电容。    2. 晶振周围打地孔做包地处理。    3. 晶振底部不要走信号线,尤其是其他高频时钟线。    4. 负载电容的回流地要短。    5. 走线时先经过电容再进入晶振。    下面分别举例贴片无源晶振及有源晶振的走线方式:    两脚贴片无源晶振    6.    封装较大,可从晶振中间出线。    7.    如果有测试点,使stub尽量短。    8.    走线可以走成假差分形式。尽量走在同一层。    9.    部分晶振底下需要做掏空处理,以防电容效应以及热效应造成频偏。    10.  如果是铁壳晶振,外壳做接地处理,提高抗干扰能力。    11.  晶振选型需要选工作温度达到125摄氏度及以上的。    四脚贴片无源晶振    HTOL测试板上有源晶振的布局:    由于老化测试中一般芯片都在socket中测试,所以晶振不能与Socket放置在同一面,否则晶振会距离芯片较远。    晶振放在反面则需要打孔后连接至芯片管脚,此时需要在打孔附近增加回流地孔。    贴片有源晶振
2022-06-30 09:32 阅读量:2170
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CD74HC4051QPWRQ1 Texas Instruments
PCA9306DCUR Texas Instruments
TXB0108PWR Texas Instruments
TPS5430DDAR Texas Instruments
TPIC6C595DR Texas Instruments
TPS61021ADSGR Texas Instruments
型号 品牌 抢购
ULQ2003AQDRQ1 Texas Instruments
TXS0104EPWR Texas Instruments
TPS61021ADSGR Texas Instruments
TPS63050YFFR Texas Instruments
TPS61256YFFR Texas Instruments
TPS5430DDAR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。