击败柯洁的是采用了谷歌TPU的单机版AlphaGo

Release time:2017-05-25
author:Ameya360
source:网络整理
reading:96

  AlphaGo采用了十颗TPU在云上运行,跟去年相比,本次对弈的新版AlphaGo计算量小了十倍,自我对弈能力更强,运行起来更简单,更好,功耗也更小。

  23日起跑的“中国乌镇围棋峰会”,由柯洁对战AlphaGo掀开序幕。 历时四个多小时的比赛,最终执黑棋先行的柯洁以1/4子之差落败,由AlphaGo取得第一胜。 赛后发布会上,柯洁和AlphaGo创始人、DeepMind首席执行官哈萨比斯(Demis Hassabis)以及DeepMind 强化学习团队首席程序员David Silver出席并回答了提问。

  赛后柯洁的心情看起来还不错,言辞也十分谦虚。他先是称赞了AlphaGo强大的实力,又坦言棋手们可以从中学到很多东西,AlphaGo下的很精彩,自己尽了全力:“它下的太好了,很值得棋手学习和探讨。我们需要开拓自己的思维,不能停留在原地了。” 柯洁承认,虽然自己对比赛仍然充满自信,但还完全没有摸到AlphaGo的弱点,甚至自嘲“只能等AlphaGo自己出bug”了。不过有意思的是,DeepMind创始人哈萨比斯在现场表示,不仅是DeepMind,甚至连AlphaGo自己也不知道自己有哪些bug……

  哈萨比斯称:“AlphaGo采用了十颗TPU(Tensor Processing Units)在云上运行,跟去年相比,本次对弈的新版AlphaGo计算量小了十倍,自我对弈能力更强,运行起来更简单,更好,功耗也更小。”

  DeepMind方面表示,本次与柯洁对弈的AlphaGo乃是单机版,与过去跟李世石对战时不同,当初是分布式版本。 这一次AlphaGo拥有更强大的算法,运算起来更简单也更好。 单机版的速度更快,运算结果也更好,采用了TPU,并架设在Google Cloud之上。 而根据DeepMindCEO哈萨比斯的补充,这一次的AlphaGo计算能力少于过去(对战李世石的)1/10。

  换句话说,就是“AlphaGo已经是自己的导师”,甚至于它已经不满足于只是单纯取得胜利,而是控制胜利的概率以及输赢的差距。这个说法已经得到了DeepMind工程师的现场验证:“我们的确在研究如何通过多线路决策来扩大胜率,甚至是去控制胜率,这是我们的一个探索方向。”

  根据2016年3月份,当初替AlphaGo落棋的黄世杰博士表示,与李世石对战的AlphaGo是分布式版本,与当时单机版本AlphaGo对战的话,胜率大约是70%。

  哈萨比斯表示,我们在科学杂志《自然》发表了论文,这周之后我们会公布更多细节和计划,众所周知目前也有很多强大人工智能软件,我们也会在今后公开AlphaGo更多技术细节,使其他实验室或团队能够建造自己的AlphaGo。

  关于谷歌第二代TPU

  谷歌前不久刚刚推出第二代TPU(相关阅读),对于标榜可发挥高达180TFLOPS的第二代TPU (Tensor Processing Unit),Google说明此项处理器依然是针对开放学习框架TensorFlow加速为主,因此无法像NVIDIA提出Tesla V100等GPU加速模式可额外支持Caffe、Cognitive Toolkit等学习框架。

  相比第一代TPU仅能针对逻辑推演作加速,Google此次宣布推出的第二代TPU不但大幅提升运算效能,更增加对应深度学习应用加速设计,配合越来越多人使用的TensorFlow学习框架,将使TPU应用领域变得更加多元,甚至直接挑战NVIDIA以GPU加速的深度学习应用模式。

  不过,在Google I/O 2017期间进一步向Google询问,确认第二代TPU设计依然是以针对开放学习框架TensorFlow加速为主,本身并不像NVIDIA Tesla V100等藉由GPU加速模式可额外支持Caffe、Cognitive Toolkit等学习框架,因此在实际布署应用弹性可能相对受限。 只是从TPU大幅去除非必要组件,仅针对深度学习、逻辑推演加速功能优化,预期仍将使NVIDIA面临不少竞争压力。

Online messageinquiry

reading
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
TPS5430DDAR Texas Instruments
TPIC6C595DR Texas Instruments
PCA9306DCUR Texas Instruments
TXB0108PWR Texas Instruments
CD74HC4051QPWRQ1 Texas Instruments
TPS61021ADSGR Texas Instruments
model brand To snap up
TPS5430DDAR Texas Instruments
TPS61021ADSGR Texas Instruments
ULQ2003AQDRQ1 Texas Instruments
TXS0104EPWR Texas Instruments
TPS63050YFFR Texas Instruments
TPS61256YFFR Texas Instruments
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
Information leaderboard
  • Week of ranking
  • Month ranking
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.