包罗万象:2017清华-罗姆国际产学连携论坛顺利举办,物联网与人工智能产学合作花火四溅

发布时间:2017-05-25 00:00
作者:
来源:罗姆半导体集团
阅读量:338


2017年5月19日 星期五 早上九点半

北京市清华大学静肃的校园中,渐渐热闹起来的一座楼引人注目——那便是“罗姆楼”。

这座建筑的正式名称是“清华-罗姆电子工程馆”。“2017清华-罗姆国际产学连携论坛(Tsinghua-ROHM International Forum of Industry-Academia 2017:TRIFIA 2017)在此成功举办。

今年已经是本论坛举办的第8个年头。在短短一天的时间,论坛就近年来在诸多领域都备受瞩目的物联网(IoT)和人工智能(AI)在学术性和事业性两方面的可能性进行了讨论,与年轻且有实力的研究人员进行合作成立了准备委员会,并开展了专题研讨会。不仅如此,面向制造业正在显著发展的中国市场,罗姆介绍了功率元器件及各种充电技术、白色家电的设计战略以及面向物联网(IoT)的传感器等的最新趋势与技术。清华-罗姆国际产学连携论坛保持着一年一次的节奏,取精用弘,将一年来提取的精华与同好分享。

当然啦,没能亲临现场的小伙伴先不要急着可惜,因为下面ROHM君带你回顾下论坛强大阵容,然后你会觉得没来更可惜。

【主题议程】

清华大学副校长王希勤致辞

中国科学院微电子所院士刘明教授主题演讲

微软研究院首席研究员刘铁岩博士演讲

「专题讨论会1 (演讲):物联网 (IoT)」

演讲内容涵盖IoT技术的应用领域及适用于新商业的范围广泛的尖端技术。其中,不仅是安防方面的解决措施,非易失性存储器和微处理器等低功耗器件技术等话题都引起了热烈的讨论。

物联网专题讨论会现场

「专题讨论会2 (演讲):人工智能 (AI)」

来自新加坡国立大学、清华大学、中国科学院以及北京大学的活跃于人工智能领域的7名年轻研究人员,热烈讨论了尖端人工智能技术以及最新发现。

人工智能专题讨论会现场

【专题讨论会议程】

「辅导课:电子技术与应用」

还不尽兴?有罗姆上海设计中心的技术人员为你开小灶,就功率元器件的应用领域、消费类电子产品充电、家庭电子产品的电源设计、IoT用低功耗环境检测传感器相关内容进行演讲,介绍了在这些领域内的开发经验和技术以及将来的趋势,交流了今后电子领域的可能性。

辅导课演讲现场

【辅导课日程】

「现场展示:先进与新兴技术」(09:00~18:00)

活动当天,在“清华-罗姆电子工程馆”一楼大厅,还通过展板的形式介绍了清华大学与罗姆的合作成果和双方的研发活动。展示内容涵盖多个技术领域,包括清华大学的非易失智能处理器、建筑物等的结构健康检测、深度学习处理、面向电力路由器的SiC功率元器件的应用相关研究成果,罗姆的SiC、传感器、光电子相关领域研究开发成果,电力控制IC、无线通信IC、汽车用IC、传感器及其周边IC等罗姆产品,以及学生发表竞赛。

回顾:清华与罗姆多年来的默契合作

清华大学和罗姆为了促进围绕尖端技术开发的共同研究与技术交流,于2006年4月签订了"产学合作框架协议",以"运用光子技术开发生物传感结构"为开端,围绕IC和半导体元件、光学元器件和模块、生物传感等广泛主题,开展了共同研究和技术交流。

为进一步深化技术交流,双方于2010年首次成功举办"清华-罗姆国际产学连携论坛(TRIFIA)"。之后,每年以热点研究为题材举办技术研讨会。

另外,在2011年清华大学百年校庆之际,作为进一步强化双方产学合作的基地,罗姆于清华大学校内捐资建设了"清华-罗姆电子工程馆"。2012年1月,在电子工程馆内增设了罗姆的研究设施,与清华大学就最尖端技术开展共同研究。近年来,在IoT、非易失性CPU、人工智能、功率电子技术等多个领域取得了丰硕的研究。

罗姆希望通过此次论坛提高与清华大学间长期共同研究的水平,并进一步强化产学合作,为全球市场做贡献而不断深化合作。


在线留言询价

相关阅读
    用于控制电力的「功率半导体」左右着纯电动汽车(EV)的节能性能。在半导体行业,日本企业的存在感正在减弱,但在功率半导体领域,日本企业则拥有30%的全球份额。日本经济新闻就应对激烈竞争的对策采访了世界半导体大企业罗姆 (ROHM) 的社长松本功。    记者:日本企业正在功率半导体领域拼尽全力。    松本功:用于运算等的半导体的微细加工技术已经实现了一定程度的商品化。但另一方面,功率半导体的材料开发则需要大量化学等方面的知识经验。在减少电阻的新材料开发竞争方面,日本企业处于领先地位。从作为原材料的晶圆到用于最终产品的电源外围设备,我们公司都有涉及。我们正通过一贯制生产来实现质量管理和稳定供应。    记者:增产和研发方面的竞争状况如何?    松本功:自2021年起,脱碳风潮兴起,汽车纯电动化的趋势提前了两年。与使用硅材料的产品相比,使用电力损耗大幅减少的新一代材料「碳化硅(SiC)」的功率半导体的需求增加。以美欧厂商为中心,展开了投资竞争。    中国正在举全国之力推进这方面的开发,其追赶速度惊人。(中国)在各地建立了使用生产效率高的大口径晶圆的工厂。我们公司从20多年前就开始与京都大学等合作研究碳化硅材料,积累了相关技术,但如果不能继续走在前面的话,形势就会被逆转。    记者:通过什么来分出胜负?    松本功:在迅速扩大的市场上,作为知名度源泉的市占率非常重要。汽车制造商在新车上市几年之前就开始筛选半导体。需要瞄准未来5年提前建立供应体制。我们公司最早将于2022年内在福冈县启用新厂房大楼进行生产,目标是到2025财年(截至2026年3月)在碳化硅功率半导体领域获得3成世界份额。    记者:如何克服中美半导体主导权之争带来的困难?    松本功:加工晶圆的半导体前制程离不开美国生产的加工设备。如果今后中美对立进一步加剧,连日本企业使用美国的设备生产出来的半导体都无法向中国出口的话,将会出现负面影响。我们公司正在开拓工业机械用半导体需求旺盛的欧洲市场等。    记者:日本半导体产业能否卷土重来?    松本功:中国大陆和台湾通过政策培养了半导体工程师,相关人数迅速增加。日本的半导体产业在1990年代以后急剧衰退,对学生来说,半导体行业的就业吸引力下降。现在以相关工厂越来越多的九州为中心,人才争夺十分激烈。日本需要从人才培养做起,重新审视半导体产业。    日本功率半导体,疯狂扩产    日本瑞萨今日宣布,将对其位于甲府的甲府工厂进行价值 900 亿日元的投资。他们指出,虽然工厂于 2014 年 10 月关闭,但瑞萨电子计划在 2024 年重新开放该工厂,作为能够制造IGBT和功率MOSFET的300 毫米功率半导体晶圆厂。    瑞萨表示,随着碳中和势头的增长,预计全球对供应和管理电力的高效功率半导体的需求将在全球范围内急剧增加。瑞萨特别预计电动汽车 (EV) 的需求将快速增长,因此计划提高其 IGBT 等功率半导体的产能,为脱碳做出贡献。一旦甲府工厂实现量产,瑞萨功率半导体的总产能将翻一番。    瑞萨电子的全资子公司瑞萨半导体制造有限公司的甲府工厂此前经营 150mm 和 200mm 晶圆制造线。为了提高产能,瑞萨决定利用工厂的剩余建筑,将其恢复为专用于功率半导体的 300 毫米晶圆厂。    瑞萨电子总裁兼首席执行官 Hidetoshi Shibata 表示:“可持续发展是我们的核心,以‘让我们的生活更轻松’为宗旨,我们希望建立一个可持续的未来,我们的半导体技术和解决方案有助于让我们的生活更轻松。” “这项投资使我们能够拥有最大的专用于功率半导体的晶圆制造线,这是实现脱碳的关键。我们将继续进行必要的投资,以提高我们的内部生产能力,同时进一步加强与外包合作伙伴的联系。为应对中长期需求增长,瑞萨电子仍致力于确保供应安全,为我们的客户提供最佳支持。”    东芝扩产SiC和GaN,大幅提升功率半导体    今年年初,东芝子公司表示,将在 4 月开始的新财年增加资本支出,以在需求旺盛的情况下扩大其主要生产基地的功率半导体器件的产能。    东芝电子器件与存储设备已为 2022 财年指定投资 1000 亿日元(8.39 亿美元),比 2021 财年 690 亿日元的估计高出约 45%。    这笔资金将资助在石川县的生产子公司加贺东芝电子的场地建设一个新的制造设施,该设施计划于 2023 年春季开始。它还将包括在现有结构内安装一条新的生产线。此次升级预计将使东芝的功率半导体产能提高约 150%。    功率器件用于电子设备中的电力供应和控制,有助于减少能量损失。随着向碳中和社会的努力加速和车辆电动化,需求正在增加。    产能扩张将不仅涵盖由硅片制成的功率器件,还包括以碳化硅和氮化镓为晶圆的下一代芯片。    东芝还将扩大对另一个主要产品类别硬盘的投资。它已开发出将存储容量提高到超过 30 TB 的技术,或比当前可用水平高出 70% 以上,并致力于早期商业化。    东芝电子器件和存储公司正在设想数据中心和电源设备的硬盘驱动器的增长,并正在紧急加大在这两个领域的投资。为了加强其重点,该部门在 2020 财年重组了其业务,结束了系统芯片业务的新发展。    东芝已在截至 2025 财年的五年内为设备业务指定投资 2900 亿日元,而上一个五年期间为 1500 亿日元。该集团在当前五年任期的前两年使用了约 60% 的预算,如有必要,将考虑投入更多资金。    该集团已公布计划拆分为三个针对基础设施、设备和半导体存储器的公司。但大股东对此表示反对,分拆能否实现尚不确定。    三菱电机:1300亿投向功率半导体,谋划8英寸SiC    三菱电机于 2021 年 11 月 9 日举行了功率器件业务的业务说明会,并宣布将在未来五年内向功率半导体业务投资 1300 亿日元,直至 2025 年。该公司计划在福山工厂(广岛县福山市)新建一条 12 英寸(300 毫米)晶圆生产线,并计划到 2025 年将其产能比 2020 年翻一番。    据该公司称,由于汽车自动化、消费设备逆变器的进步和工业/可再生能源的节能需求,功率器件市场在2020年到2025年之间将以12%的复合年增长率(CAGR)增长。而电气化铁路的发展,以及自动化的进步。预计会以速度扩大。    功率器件市场前景    三菱电机将公司功率器件业务的目标设定为——到2025年销售额2400亿日元以上、营业利润率10%以上。为实现目标,三菱电机将重点关注增长预期较高的汽车领域和公司市场占有率较高的消费领域,两个领域按领域销售的比例将从2020年的 50%提升到到2025年的65% 。    公司的增长目标和业务政策    三菱电机还表示还表示,与 2020 年相比,公司计划到 2025 年将晶圆制造(前道处理)的产能翻一番。封装和检测环节(后道工序)也将“及时、适当地投入”以满足未来的需求。按照三菱电机的计划,公司在未来五年(至2025年)的投资规模约为1300亿日元。    这项投资的一个典型例子是在福山工厂建设 8 英寸(200 毫米)和 12 英寸生产线。8英寸生产线将于2021年11月开始试运行,并计划于2022年春季开始量产。12英寸线的量产目标是2024年。    固定投资计划概要    新的12英寸生产线具有通过增加硅片直径和通过自动化提高生产力的优势,以及通过在内部增加载流子存储层实现低损耗的独特“CSTBT cell结构”晶圆。通过这种改进,三菱电机希望能够实现低损耗和提高生产率,三菱电机也将把它应用到 RC-IGBT 上,以实现其产品的差异化,而汽车领域和消费领域将是公司这些产品的首个目标市场。    三菱电机同时表示,公司也在加强对 SiC 的努力,它具有从大型电动汽车扩展到中型电动汽车的潜力。除了将独特的制造工艺应用于沟槽 MOSFET 以进一步提高性能和生产力之外,该公司还考虑制造 8 英寸Si晶圆。    该公司表示,“我们将根据客户的需求适当地使用硅和 SiC 来加强我们的业务。通过提供集成了硅芯片 / SiC 芯片的模块阵容,我们将满足从小到大客户的多样化需求。”解释说。    富士电机表示,将增产功率半导体    2022年1月27日,富士电机表示,将增产功率半导体生产基地富士电机津轻半导体(青森县五所川原市/以下简称津轻工厂)的SiC(碳化硅)产能。量产计划在截至 2025 年 3 月的财政年度开始。    未来五年,富士电机将扩大 8 英寸硅片前端生产线为中心,进行与功率半导体相关的资本投资,总额 将高达1200 亿日元。但是,为了应对电动汽车和可再生能源对功率半导体的需求增加,富士电机决定追加投资,包括在津轻工厂建设 SiC 功率半导体生产线。    “功率半导体的资本投资预计将增加到1900亿日元,”该公司表示。    罗姆,继续加码SiC    抢攻电动车(EV)商机、日厂忙增产EV用次世代半导体「碳化硅(SiC)功率半导体」。    据日经新闻早前报导,因看好来自电动车(EV)的需求将扩大,也让罗姆(Rohm)等日本厂商开始相继增产节能性能提升的EV用次世代半导体。各家日厂增产的对象为用来供应\控制电力的「功率半导体」产品,不过使用的材料不是现行主流的硅(Si)、而是采用了碳化硅(SiC)。SiC功率半导体使用于EV逆变器上的话,耗电力可缩减5-8%、可提升续航距离,目前特斯拉(Tesla)和中国车厂已开始在部分车款上使用SiC功率半导体。    报导指出,因看好来自EV的需求有望呈现急速扩大,罗姆将投资500亿日圆、目标在2025年之前将SiC功率半导体产能提高至现行的5倍以上。罗姆位于福冈县筑后市的工厂内已盖好SiC新厂房、目标2022年启用,中国吉利汽车的EV已决定采用罗姆的SiC功率半导体产品,而罗姆目标在早期内将全球市占率自现行的近2成提高至3成。    罗姆在该领域一直处于领先地位,2010 年量产了世界上第一个 SiC 晶体管。2009 年收购的德国子公司 SiCrystal 生产 SiC 晶圆,使罗姆具备了从头到尾的生产能力。它最近在日本福冈县的一家工厂开设了一个额外的生产设施,这是将产能增加五倍以上的计划的一部分。    携手电装,联电将在日本建12吋IGBT线    早前,日本电装(DENSO)发表消息称,公司将和全球半导体代工厂联合微电子公司达成协议,同意在联电日本晶圆厂子公司USJC 300 毫米晶圆厂,合作生产功率半导体,以满足汽车市场不断增长的需求。    USJC 的晶圆厂将安装绝缘栅双极晶体管 (IGBT) 生产线,这将是日本第一家在 300 毫米晶圆上生产 IGBT 的工厂。DENSO 将贡献其面向系统的 IGBT 器件和工艺技术,而 USJC 将提供其 300mm 晶圆制造能力,以将 300mm IGBT 工艺量产,该计划于 2023 年上半年开始。此次合作得到了改造和脱碳计划的支持日本经济产业省不可缺少的半导体。    随着全球减少碳排放的努力,电动汽车的开发和采用加速,汽车电气化所需的半导体需求也在迅速增加。IGBT 是功率卡中的核心器件,用作逆变器中的高效功率开关,用于转换直流和交流电流,以驱动和控制电动汽车电机。    “DENSO 很高兴成为日本首批开始在 300 毫米晶圆上量产 IGBT 的公司的成员,”电装总裁 Koji Arima 说。“随着移动技术的发展,包括自动驾驶和电气化,半导体在汽车行业变得越来越重要。通过此次合作,我们将为功率半导体的稳定供应和汽车的电气化做出贡献。”    “作为日本的主要代工企业,USJC 致力于支持政府促进国内半导体生产和向更环保的电动汽车过渡的战略,”USJC 总裁 Michiari Kawano 说。“我们相信,我们获得汽车客户认证的代工服务与电装的专业知识相结合,将生产出高质量的产品,为未来的汽车趋势提供动力。”    “我们很高兴与电装这样的领先公司进行这种双赢的合作。这是联电的一个重要项目,将扩大我们在汽车领域的相关性和影响力,”联电联席总裁 Jason Wang 说。“凭借我们强大的先进专业技术组合和位于不同地点的 IATF 16949 认证晶圆厂,联华电子能够很好地满足汽车应用的需求,包括先进的驾驶辅助系统、信息娱乐、连接和动力系统。我们期待在未来与汽车领域的顶级参与者利用更多的合作机会。”    此外,在去年十二月,电装还宣布,作为其实现低碳社会努力的一部分,其配备了高质量的碳化硅 (SiC) 功率半导体的最新型号升压功率模块已开始量产,并被用于于2020 年 12 月 9 日上市的丰田新 Mirai 车型上。    在介绍中,DENSO表示,公司开发了 REVOSIC 技术,旨在将 SiC 功率半导体(二极管和晶体管)应用于车载应用。他们指出,碳化硅是一种与传统硅(Si)相比在高温、高频和高压环境中具有优越性能的半导体材料。因此,在关键器件中使用 SiC 以显着降低系统的功率损耗、尺寸和重量并加速电气化引起了广泛关注。    2014 年,DENSO 推出了一款用于非汽车应用的 SiC 晶体管,并将其商业化用于音频产品。DENSO 继续对车载应用进行研究,2018 年,丰田在其 Sora 燃料电池巴士中使用了车载 SiC 二极管。    现在,DENSO 开发了一种新的车载 SiC 晶体管,这标志着 DENSO 首次将 SiC 用于车载二极管和晶体管。新开发的SiC 晶体管在车载环境中提供高可靠性和高性能,这对半导体提出了挑战,这要归功于 DENSO 独特的结构和加工技术,应用了沟槽栅极 MOSFET。搭载SiC功率半导体(二极管、晶体管)的新型升压功率模块与搭载Si功率半导体的以往产品相比,体积缩小约30%,功率损耗降低约70%,有助于实现小型化。升压电源模块,提高车辆燃油效率。    DENSO 表示,公司将继续致力于 REVOSIC 技术的研发,将技术应用扩展到电动汽车,包括混合动力汽车和纯电动汽车,从而助力建设低碳社会。    近日,DENSO 在一篇新闻稿中指出,功率半导体就像人体的肌肉。它根据来自 ECU(大脑)的命令移动诸如逆变器和电机(四肢)之类的组件。车载产品中使用的典型功率半导体由硅 (Si) 制成。相比之下,碳化硅在高温、高频和高压环境中具有卓越的性能,有助于显着降低逆变器的功率损耗、尺寸和重量。因此,SiC 器件因其加速车辆电气化而受到关注。    电装指出,与采用硅功率半导体的传统产品相比,采用公司碳化硅功率半导体的升压功率模块体积缩小了约 30%,功率损耗降低了 70%。这就可以让产品变得更小,车辆燃油效率得到提高。    电装工程师也表示,与硅相比,碳化硅的电阻低,因此电流更容易流动。由于这种特性,一个原型 SiC 器件被突然的大电流浪涌损坏。为此电装的多部门合作讨论如何在充分利用 SiC 的低损耗性能的同时防止损坏市场上的设备,并以一个我们部门无法单独提出的想法解决了这个问题:使用特殊的驱动器 IC 高速切断电流。
2022-09-27 13:15 阅读量:1559
    引言    近年来,为了实现“碳中和”等减轻环境负荷的目标,需要进一步普及下一代电动汽车(xEV),从而推动了更高效、更小型、更轻量的电动系统的开发。尤其是在电动汽车(EV)领域,为了延长续航里程并减小车载电池的尺寸,提高发挥驱动核心作用的电控系统的效率已成为一个重要课题。SiC(碳化硅)作为新一代宽禁带半导体材料,具备高电压、大电流、高温、高频率和低损耗等独特优势。因此,业内对碳化硅功率元器件在电动汽车上的应用寄予厚望。    罗姆第4代SiC MOSFET应用于“三合一”电桥    近日,上汽大众与臻驱科技联合开发的首款基于SiC技术的 “三合一”电桥完成试制。据悉,对比现有电桥产品,这款SiC“三合一”电桥在能耗表现方面非常抢眼,每百公里可节约0.645kW·h电能。以上汽大众在ID 4X车型上的测试结果为例,对比传统的IGBT方案,整车续航里程提升了4.5%。由此可知,SiC电桥方案的优势非常明显。但作为一种新技术,SiC电控系统还存在一些开发难点,比如SiC模块的本体设计,以及高速开关带来的系统EMC应对难题。值得一提的是,臻驱科技此次完成试制的“三合一”电桥采用的是罗姆第4代SiC MOSFET裸芯片,充分发挥了碳化硅器件的性能优势。    罗姆于2020年完成开发的第4代SiC MOSFET,是在不牺牲短路耐受时间的情况下实现业内超低导通电阻的产品。该产品用于车载主驱逆变器时,效率更高,与使用IGBT时相比,效率显著提升,因此非常有助于延长电动汽车的续航里程,并减少电池使用量,降低电动汽车的成本。    罗姆第4代SiC MOSFET的独特优势    罗姆作为碳化硅领域的深耕者,从2000年就开始了相关的研发工作,并在2009年收购碳化硅衬底供应商SiCrystal后,于2010年率先推出了商用碳化硅MOSFET,目前产品涵盖SiC SBD、SiC MOSFET和全SiC模组,其中SiC SBD、SiC MOSFET可以裸芯片的形式供货。罗姆在2015年发布了第3代也是第一款商用沟槽结构的SiC MOSFET产品,支持18V驱动。2020年,罗姆又推出了第4代SiC MOSFET。目前,不仅可供应裸芯片,还可供应分立封装的产品。分立封装的产品已经完成了面向消费电子设备和工业设备应用的产品线开发,后续将逐步开发适用于车载应用的产品。    对比罗姆的第3代SiC MOSFET产品,第4代SiC MOSFET具有导通电阻更低的特点。根据测试结果显示,在芯片尺寸相同且在不牺牲短路耐受时间的前提下,罗姆采用改进的双沟槽结构,使得MOSFET的导通电阻降低了约40%,传导损耗相应降低。此外,从RDS(on)与VGS的关系图中,我们可以发现第4代SiC MOSFET在栅极电压处于+15V和+18V之间时具有更平坦的梯度,这意味着第4代SiC MOSFET的驱动电压范围可拓展至15V-18V。    同时,第4代SiC MOSFET还改善了开关性能。通常,为了满足更大电流和更低导通电阻的需求,MOSFET存在芯片面积增大、寄生电容增加的趋势,因而存在无法充分发挥碳化硅原有的高速开关特性的课题。第4代SiC MOSFET,通过大幅降低栅漏电容(Cgd),成功地使开关损耗比以往产品降低约50%。    此外,罗姆还对第4代SiC MOSFET进行了电容比的优化,大大提高了栅极和漏极之间的电容(CGD)与栅极和源极之间的电容(CGS)之比,从而减少了寄生电容的影响。比如,可以减小在半桥中一个快速开关的SiC MOSFET施加在另一个SiC MOSFET上的高速电压瞬变(dVDS/dt)对栅源电压VGS的影响。这将降低由正VGS尖峰引起的SiC MOSFET意外寄生导通的可能性,以及可能损坏SiC MOSFET的负VGS尖峰出现的可能性。
2022-09-22 10:55 阅读量:1713
  在由内置折返式限流电路的线性稳压器供电的电路模块中,流过较大的峰值电流(如直通电流)时,可能会发生启动故障。  为了防止直通电流导致的故障发生,需要在设计和评估阶段通过实测来确认供电的电路模块中没有过大的峰值电流。  案例  直通电流导致的启动故障  图1显示了与线性稳压器输出端连接的某电路模块的电路电流特性。该电路的设计初衷是在被施加1.8V以上的电源电压时会工作,但实际上在电路稳定工作之前的0.7V附近会流过大电流。如果尚未对低于工作电压的电路工作进行充分验证,这种情况是可能会发生的,并且由于电路不稳定或意外动作,电源和接地之间可能会出现直通电流。  图2表示将有直通电流的电路模块连接到“案例:恒流负载导致的启动故障”中提到的内置折返式限流电路的线性稳压器输出端后的情况。这是将图1的XY轴反置后的特性叠加在电流折返特性(黄绿色曲线)上的示意图。  电路模块从A点开始启动,当电源电压(线性稳压器IC的输出)达到约0.7V时,突然开始流入直通电流,如图1所示,需要流过约800mA的电流(C点)。但是,由于线性稳压器IC的折返限流特性,电流在B点被限制。因无法提供所需的电流,所以输出电压不会上升,出现启动故障。  实际上,受启动时的噪声和寄生元件的影响,很多情况下最终会启动起来,因此只有在量产时发现众多产品中有不启动的个体时,才会注意到设计或评估过程中的缺陷。因此,要想防患于未然,就需要对线性稳压器的供电电路模块的电流特性进行实测,确认没有过大的峰值电流。
2022-09-21 14:08 阅读量:1868
  毫无疑问,数字音频播放中高音质的关键在于将数字信号转换为模拟信号的D/A转换器。很多半导体企业正全力投入现有技术大力开发DAC芯片,其中不仅有用于移动应用的小型低价DAC芯片,还有不惜成本追求最高性能的高端音响设备用DAC芯片。  当然,也有一些音响制造商不使用DAC芯片,而是开发将自有程序FPGA与固定电阻器等结合起来的分立DAC电路。  32位DAC旗舰产品 MUS-IC“BD34301EKV”  在这里将为大家介绍由总部位于日本京都的全球知名半导体制造ROHM开发的、用于高端音响设备的DAC芯片。其中,实现了超高性能的32位DAC旗舰产品——MUS-IC“BD34301EKV”,已被LUXMAN的SACD/CD播放器“D-10X”采用,并已在市场上获得高度好评。  LUXMAN的SACD/CD播放器“D-10X”  另外,各种性能接近“BD34301EKV”、且价格低廉的32位DAC“BD34352EKV”也已于今年年初开始量产。  “ROHM”标志位于左上方  ROHM将这个高端音频产品品牌称为“MUS-IC”。MUS-IC的正式名称为“ROHM Musical Device MUS-IC”,是在ROHM的企业特色——“质量第一”、“为音乐文化的普及与发展做贡献”、“垂直统合型生产”基础上,融合“音质设计技术”开发而成的IC中,ROHM的音质负责人带着自信推出的ROHM高端音频IC专用的音频产品品牌。ROHM将其定位为“为音乐而生的ROHM音频IC的高端系列”。  MUS-IC于2018年推出,迄今为止ROHM推出的MUS-IC品牌产品包括电源IC“BD37201NUX”、声音处理器IC“BD34704KS2”、“BD34705KS2”、“BD34602FS-M”以及D/A转换器“BD34301EKV”。这款BD34301EKV正是被LUXMAN高端SACD/CD播放器D-10X采用的DAC芯片。此外,在D-10X中还采用单声道操作中每通道使用一个BD34301EKV立体声DAC的奢华处理。  除此以外,声音处理器IC是指采用了自有的微步进音量技术的、用来调节音量的音量调节IC。
2022-09-21 14:03 阅读量:1659
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
PCA9306DCUR Texas Instruments
CD74HC4051QPWRQ1 Texas Instruments
TPIC6C595DR Texas Instruments
TXB0108PWR Texas Instruments
TPS61021ADSGR Texas Instruments
TL431ACLPR Texas Instruments
型号 品牌 抢购
TPS61021ADSGR Texas Instruments
TXS0104EPWR Texas Instruments
TPS5430DDAR Texas Instruments
TPS63050YFFR Texas Instruments
TPS61256YFFR Texas Instruments
ULQ2003AQDRQ1 Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。