Using sensor controllers to reduce power consumption in mobile computing

发布时间:2016-04-14 00:00
作者:
来源:Ameya360
阅读量:5275


Challenges in mobile computing 

       The most common challenges facing mobile computing system architects are reducing system size, cost, power consumption, and improving human machine interfaces (HMI). Size is a key feature in mobile computing because for mobile devices the systems have to be designed as small and as light as possible. Main processors and RAM are stacked up system-in-PCB to reduce the size of the printed circuit board (PCB). The3G/4G, GPS, Wi-Fi, near field communication (NFC), Bluetooth, and AM/FM radios are now combined in system-in-packages. The battery charger, fuel gauge, oscillators, and power regulators are also combined in a single package. The challenge is to keep miniaturizing these modules while adding more features to the system.

       cost is one of the other driving requirements of the design cycle. The cost of the bill of materials (BOM) should be as low as possible without sacrificing system features. Self-sufficient devices with minimal external components are always desired. Every resistor, capacitor, inductor, regulator, or glue-logic associated to an active component impacts the total cost of the system. 

       Users now expect that a device will run for at least 8 hours. Current rechargeable battery technologies are based on lithium-polymer chemistry, which has helped increase battery life from 4-5 hours to at least 8 hours, but improving battery technology alone is not enough to assure maximum running time. System architects have to create a power budget for every block inside the system. The most power-hungry blocks are the 3G/4G and GPS radios, followed by the Wi-Fi, Bluetooth, NFC, and AM/FM radios. These radios are usually combined in a single package and are controlled individually by the host processor. A host processor consumes most of the battery charge since it has to be on most of the time. It manages complex tasks such as receiving/transmitting information over the 3G/4G radios, computes complex algorithms to render the images displayed on the screen, accesses information stored on the memory, plays music files, etc. System and software architects work together to keep the main processor in low-power modes as much as possible. 

       Sensors are a fundamental part of the human machine interface; sensors help the system identify the context and environmental conditions. Motion sensors such as accelerometers, gyroscopes, and magnetometers identify whether the system is on a flat surface or whether it is being moved or tilted in a certain position. They provide the orientation of the system and also help provide a more accurate position of the system by increasing the resolution of the GPS with dead-reckoning algorithms. They can also be used in conjunction with the Wi-Fi or 3G/4G radios to determine the position of the system inside a building where the GPS signal is not available. They are the preferred interface, and commonly used, in gaming and augmented reality applications. Sensors in mobile computing applications can track ambient light, barometric pressure, touch, temperature, and voice recognition. 

       Ambient light sensors help dim the backlight of the screen according to the surrounding light and can also be used as proximity sensors. Multiple ambient light sensors configured as proximity sensors can be used to identify gestures and offer an alternative to touch sensing interfaces. Barometric pressure sensors are used in altimeter applications. These sensors, along with the motion sensors, enable the device to become an indoor navigation system. 

       Touch sensors are currently the most common human machine interface; they are on every smartphone and tablet and are the preferred typing interface in small factor devices. Touch sensors are typically mounted on the displays. 

       Temperature sensors are widely used to keep track of the hot spots on the system. They provide feedback to the system to do thermal and power management. 

       Finally, voice recognition has been re-introduced to mobile computing devices. Algorithms have been enhanced so they can filter out noise and can understand people with different accents. Technological advances in microphones and analog-to-digital (ADC) devices have made this technology more affordable and efficient.


上一篇:快充对电池影响大?

下一篇:

在线留言询价

相关阅读
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TPIC6C595DR Texas Instruments
TL431ACLPR Texas Instruments
TPS61021ADSGR Texas Instruments
PCA9306DCUR Texas Instruments
CD74HC4051QPWRQ1 Texas Instruments
TXB0108PWR Texas Instruments
型号 品牌 抢购
TPS63050YFFR Texas Instruments
TPS61021ADSGR Texas Instruments
TPS5430DDAR Texas Instruments
TXS0104EPWR Texas Instruments
TPS61256YFFR Texas Instruments
ULQ2003AQDRQ1 Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。