安森美:汽车区域控制器架构趋势下,这三类的典型电路设计正在改变

发布时间:2024-03-19 09:05
作者:AMEYA360
来源:安森美
阅读量:555

  汽车市场正在转向区域控制器架构的趋势方向,而汽车区域控制器架构正朝着分布式、集成化、智能化的方向发展,以实现更高效的数据处理、功能整合与自动驾驶支持。基于区域控制器架构带来很多设计的机会与挑战,例如SmartFET正越来越多替代传统的MOSFET器件。

  SmartFET是一种集成了智能控制和保护功能的功率MOSFET器件,今天已经在电动汽车上得到广泛应用。在传统功率开关元件的基础上,SmartFET增加了诸如过流、过热、过压保护以及实时监测和诊断等功能。通过集成电流检测、温度补偿以及自适应开关控制技术,SmartFET能够根据实际工作条件自动调整其行为,防止出现潜在故障,并且简化了电路设计,减少了外部组件需求。

  例如,在汽车电子领域,安森美(onsemi)提供的高边SmartFET不仅能够高效地切换负载,如LED照明、启动器、车门模块、暖通空调和其他执行器,还具有主动浪涌电流管理、过温关断与自动重启以及主动过压钳位等特性,从而极大地提升了整个系统的稳定性和使用寿命。

  从高边驱动到低边驱动,SmartFET的多效“收益”

  通常在使用MOSFET的时候,首先要有合适的驱动,例如一个合适的门极电阻。同时为了防止场效应管的损坏,我们还要有各种保护措施,例如过流过温和过压的保护电路,来保证其长期可靠运行不致损坏。通常这些保护电路都是由分立器件达成,既增加系统成本,同时也占据了较大的PCB空间。

  而SmartFET产品把这些驱动和监测保护电路都集成到标准MOSFET的封装里面,因此一个SmartFET有两个主要部件组成:首先它有一个基于标准MOSFET的功率级负责向负载提供电流;第二个就是控制级,这里面主要是指MOSFET的驱动和监测保护电路,有了这个控制级就能够正确的开关MOSFET,同时能够防止其损坏。这样既可以增加MOSFET使用的可靠性,同时也能节省系统成本,以及减少PCB占用的空间。这些优点使得SmartFET在汽车电子里面得到了广泛的使用。

安森美:汽车区域控制器架构趋势下,这三类的典型电路设计正在改变

  高低边驱动是用于控制电路中负载通断的两种基本方法,它们在电源管理、电机控制和汽车电子等领域广泛应用。具体来说:

  低边驱动(Low Side Driver, LSD):在一个直流电源供电的电路中,低边驱动是指通过控制连接到负载地线(或接地端)的开关元件来实现对负载电流的接通和关断。当这个“开关”(通常是MOSFET或晶体管)导通时,负载可以形成回路并从电源汲取电流;当开关关断时,负载与地之间的路径被切断,从而停止电流流动。

  高边驱动(High Side Driver, HSD):高边驱动则是指通过控制连接到负载电源正极一侧的开关元件来控制负载电流。高边驱动相对复杂一些,因为它需要处理的问题包括确保栅极驱动电压高于电源电压以保证MOSFET有效开启,并且必须考虑电荷泵或者自举电路来提供足够的栅极驱动电压。当高边开关导通时,负载与电源之间形成通路开始工作;而开关关断时,负载失去上端电源供应,电流不再流过负载。

  总结起来,在一个电源和负载之间,如果通过控制下侧(靠近地线)的开关来控制负载,就是低边驱动;如果通过控制上侧(靠近电源正极)的开关来控制负载,则是高边驱动。这两种方式都有各自的优缺点和适用场景,设计时根据系统需求、效率、安全性等因素选择合适的方式。

安森美:汽车区域控制器架构趋势下,这三类的典型电路设计正在改变

  高边SmartFET的三大类典型应用

  由于集成了各种检测和保护电路,高边SmartFET事实上能够处理各种各样的负载。常见的我们可以分为三大类应用。

  第一大类就是灯泡和电容负载。这类负载的特点是他们在刚开始导通的时候,会有一个浪涌电压。例如灯泡在冷态的时候,它的电阻比较小。刚开始导通的时候的电流会远远大于它的额定电流。电容更是如此,在刚开始导通的时候它有一个充电电流。这个时候就要求高边的SmartFET能处理这个浪涌电流。这些典型的负载如车内外的照明,或者像在ECU里常见的各类DCDC电源模块,等等。

  第二种负载就是感应负载。像各种电机和继电器这类负载他们有一个共同的特点,里面有能量的线圈在断开的时候是要有一个续流的回路,同时在原边线圈里面可能会产生一个感应电压(也叫做反激电压)。这些反激电压会在功率器件上产生过压,必须要把这个过压钳制到合理的范围,确保不会引起MOSFET功率开关的损坏。这类负载例如雨刷器、启动器、车门模块、暖通空调(HVAC)、燃油喷射器、电动助力转向、油门控制等的电机和继电器等。

  第三类就是电阻式负载。电阻式负载本身既没有浪涌电流也没有过压的情况出现,但是为了及时知道负载的变化,需要精确的电流检测能力。例如在LED应用中,当一串LED灯珠如果其中有一颗LED发生了损坏,这一串LED的灯串的电流就会发生变化。这个变化可能不大,但是需要及时准确的把它检测出来。这类应用除了LED照明以外,还包括加热单元、变速器和发动机管理系统等。

  区域控制器架构趋势下的SmartFET应用

  当前汽车市场的一个重要趋势是汽车电子电气架构已经开始转向区域控制器架构。区域控制器架构用来替代已经广泛使用的域控制器架构。所谓区域控制器架构,就是电子控制单元是按照特定区域的物理位置,而不是按照功能来组织和划分的。例如左车身、右车身和前车身等等,就近相应所需要的功能按照物理位置把它组织起来,组成一个区域控制器。这些区域控制器是通过高速的以太网来连接起来。这些以太网不仅传递和处理数据,同时也传递和分配电源,从而大大减少线束的复杂度和重量(值得一提的是,目前线束是电动汽车上第三重和第三贵的部件)。

安森美:汽车区域控制器架构趋势下,这三类的典型电路设计正在改变

  可以简单的归结为在区域控制器架构正在以网络取代线束,即以前域控制器里面的线束现在变成了网络。这个网络不仅是数据网络,同时也是电源网络。区域控制器架构由于它是由以太网组成的一个环形网,因此它很容易扩展,可以根据低、中、高不同档位的配置来加减相应的区域控制。这样的话,就很容易实现快速的产品市场投放。

  基于区域控制器架构不仅数据是通过网络进行传递和处理,同时电源也是通过网络进行按级分配。因此其中SmartFET会有很大的用处:用作整个区域控制器的efuse保险丝来保护电路,不至于因为浪涌电流或高压造成损坏;同时它也可以控制整个区域控制器架构的电源的通断;还可以通过SmartFET来决定什么时候把负载接到电源上面,什么时候把负载从电源上断开。

  安森美SmartFET的这些特点让应用更容易

  SmartFET是一种先进的半导体开关解决方案,旨在为汽车和工业应用提供高效、可靠的电源管理。其结构融合了垂直功率MOSFET和智能控制逻辑,实现了紧凑的封装和优化的性能。设计理念着重于提供高度集成的保护特性,如过温保护、过载保护和短路保护,以确保系统在各种故障情况下的安全运行。SmartFET还具备模拟电流检测输出,支持精确的负载监控。

安森美:汽车区域控制器架构趋势下,这三类的典型电路设计正在改变

  作为SmartFET产品技术的主要供应用,安森美在产品设计中考虑了与控制器的兼容性,使得在不同尺寸和不同RDS(ON)的SmartFET之间切换变得更容易,为应用提供更大的灵活性。安森美整个系列从1毫欧到60毫欧,从1安培到20安培,都具有相同的封装,以及相同的丝印,也有相同的指令结构和相同的高可靠性。因此,在设计制作区域控制器架构PCB板的时候,具有相当的通用性和灵活性,不会因为外部负载变化而要重新制作PCB板,这是一个非常大的优势。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
安森美:高效能低功耗工业马达驱动器“宝藏方案”
  安森美 (onsemi) 新一代IPM (Intelligent Power Module) NFAM5065L4B 模块,整合旗下DC-DC Convert , Aux Power PWM IC , OPA & LDO元件,推出高效能低功耗4KW 工业马达驱动器方案,适用于各式交流感应马达,如PMSM, BLDC 等,为业界找寻高效率低功耗马达驱动器,提供一个优质选择。  核心技术优势  1. NFAM5065L4B智能功率模块 (IPM) 的逆变器技术:NFAM5065L4B IPM 模块,是一个完全集成用于三相电机(马达)驱动器的功率级,包括六个具有反向二极管、独立高端Hi-Side栅极(Gate) 的 IGBT驱动器、LVIC 和温度传感器 (VTS)。三相三臂的 IGBT 在配置上于下臂具有独立射极(Emitter)连接脚,以利研发工程师设计电流侦测电路。  2. 保护功能(Protection Function):系统中的保护功能包括:UVP Lock-out 欠电压锁死,借由外部比较器 (OPA) 电路提供+21A过电流 (Over Current) 保护,研发工程师可以借由外部电阻分压调整过电流保护点,最后通过 CIN 引脚通知MCU 触发保护。  3. 高效率辅助电源及DC-DC 转换器:在此开发板中,DC-Link 是由外部电源提供,由NCP1063 PWM IC组成高效率辅助电源,提供15 Vdc电压给IPM运作。另外运算放大器及过电流保护比较器需要的5Vdc 及3.3Vdc电压,则透过FAN8303 DC-DC 转换IC及NCP718 LDO 提供。  4. 电流侦测电路:安森美NCS2250高速比较器及NCS20166高精密低偏移运算放大器配合NCD98011 UCB ADC 类比转数位模块,提供0.016 A/bit 的整体分辨率及相电流±16.5 A之侦测范围。  方案规格  输入电压 : 200 V to 400 VDC (最大可允许410VDC)  输出功率 : 1KW(连续操作模式) or 4KW (最长15分钟操作时间) (室温Ta=+25°C)  输出电流 : +/-2.5Arms /1KW (IPM单臂)  效率 : 95% (1KW) , 96.2%(4KW)
2024-04-12 10:16 阅读量:324
安森美推出面向工业、环境和医疗应用的下一代电化学传感器解决方案
  智能电源和智能感知技术的领先企业安森美,推出先进的微型模拟前端 (AFE)——CEM102,能以超低的电流实现超高精度的电化学传感。CEM102具备小巧外形和业内超低功耗,工程师采用它能为工业、环境和医疗保健应用开发小巧的多用途解决方案,如空气和气体检测、食品加工和农业监测,以及连续血糖监测等医疗可穿戴设备。  在实验室、采矿作业和材料制造中,电化学传感器如电位计或腐蚀传感器是提供生产系统反馈和管理危险物质的重要工具,不仅能确保流程的正常运行,还保障了员工和操作的安全。  CEM102支持打造体积极小且超低功耗的解决方案,是依赖电池供电的电化学传感器应用的理想之选。便携式气体检测等工业安全设备,可在工人身处偏远环境或需要移动时提醒他们注意潜在危险 。  CEM102 被设计为与 RSL15 Bluetooth® 5.2微控制器配合使用,RSL15提供行业功耗最低的蓝牙低功耗技术。作为一个完整的电子解决方案,它使生物传感器和环境传感器能精确测量化学电流,同时以超低系统功耗和宽电源电压范围运行。这两个器件的无缝集成、紧凑的尺寸和业界领先的能效,在缩小设备体积和确保其持久运行方面发挥着至关重要的作用,而这正是电池供电解决方案的关键因素。  该组合产品是安森美模拟和混合信号产品组合的一部分,旨在简化开发流程,促进下一代电流型传感器技术的集成和创新。它为设计人员创建高性能、高能效和互联的应用提供了极大的灵活性。此外,与其他产品相比,该解决方案具有更高的精度、降噪和低功耗。它还简化了物料清单(BoM),易于校准,并降低制造复杂性。  该系统具有宽电源电压范围(1.3 V至 3.6 V) ,可使用 1.5 V 氧化银电池或 3 V 纽扣电池工作。其运行功耗在禁用模式下仅为 50 nA,在传感器偏置模式下为 2 uA,在 18 位 ADC 连续转换的测量模式下为 3.5 uA。这相当于仅使用 3 mAh 电池就能工作 14 天,使用大容量电池则能工作数年,其表现在市场处于领先地位。  CEM102具备以下特性:  完整的双通道电化学测量解决方案(系统级)  支持 1到 4 个电极  极低的系统电流消耗  支持两种电池选择:1.3 - 1.65V 或2.375 - 3.6V  高分辨率 ADC、多个DAC用于连续偏置设置和工厂微调系统  传感器异常情况检测和主机处理器唤醒  小尺寸——1.884 x 1.848 mm封装
2024-04-11 10:12 阅读量:282
安森美:图像传感器这项WoM技术,智能家居、安防应用少不了!
  您有没有想过,智能生活中的小日常背后都蕴藏着哪些科技力量?比如,智能门铃如何检测到有人走到您家门口,又如何通过摄像头识别重要动作?答案就是——图像传感器。  这些微型传感器内置在智能门铃中,始终以全状态(全分辨率、30fps)运行,其中记录的图像可以清楚地显示是什么人或什么物体正在接近您家门口。考虑到此类设备需要24小时不间断运行,您或许想知道,由主流电池来供电的版本或其他版本能够可靠地工作多长时间。  安森美(onsemi)新推出的图像传感器系列HyperluxTM LP内置有“运动唤醒”(WoM)功能,可以让传感器在低功耗模式下工作,功耗仅为全性能工作模式功耗的一小部分。一旦检测到运动,这些传感器就会迅速进入更高性能状态,整个过程所花费的时间比拍摄一张快照还要少。本文将深入探讨运动唤醒功能,详细介绍其优势以及适合的应用场景。  运动唤醒的优势,不止低功耗  图像传感器的WoM功能让视觉系统可以根据场景中的物体运动来调整工作状态。在WoM模式下,传感器处于预检测状态(低分辨率、低帧率)。当检测到运动时,图像传感器判断场景中是否确实存在运动物体,并向图像信号处理器(ISP)/系统单芯片(SoC)发送通知。后者随即确定检测到的运动是否与应用场景相关,如果相关,则唤醒整个视觉系统执行预定的操作。  此功能用途巨大,因为大多数应用并不需要视觉系统始终以原生模式(全分辨率、最大帧率)运行。在其工作过程中,仅有小部分时间需要采用原生模式。其余时间,传感器都可以处于预检测状态,以便尽可能降低损耗。  在预检测状态下,Hyperlux LP 图像传感器的功耗不到原生模式下功耗的1/100。视觉系统对电量消耗非常敏感,而WoM功能可显著降低其功耗,从而大大延长运行周期。无论是使用电池等有限电源,还是采用持续供电方式,相关系统都能以超低功耗水平运行。对于前者,其充电周期将大幅延长,而对于后一种供电方式,此功能则有助于实现兼具多种创新功能、运行在边缘、且不需要远程中央处理系统的差异化系统。  运动唤醒赋能家居、安防应用  门禁(如可视门铃、生物特征识别)、公共安全与防护(如执法记录仪)及安保(如监控摄像头)等领域使用的视觉系统都可以利用WoM功能。  例如,可视门铃要么采用电池供电,要么采用墙插供电,功率非常低(功率因子为1时小于20W)。对于前一种情况,目前的行业趋势要求充电周期达到180天,最终目标是达到一年。如果没有像WoM这样的功能,那么无论场景中是否存在相关运动,系统都将不得不始终以选定的帧率处理全分辨率图像。但在大多数情况下,只有当某个人走到门口时,这种处理才有意义。借助WoM模式,可视门铃大部分时候处于预检测状态,系统以超低功耗运行,只有检测到运动时,才进入正常工作状态。  WoM功能对于监控摄像头这样的非电池供电应用也大有裨益。在WoM模式下,预检测状态所采用的主导运行方式大幅降低了数据带宽的使用量,同时不会导致丢失场景信息。这进而又降低了存储和散热要求,减小了视觉系统的总拥有成本。  上述WOM功能的基本应用有很多好处,但我们还需要考虑如何针对特定运动进行优化。例如,我们肯定不希望图像传感器和视觉系统仅仅因为风吹动树叶或者场景中有鸟儿飞过就被唤醒。让传感器始终聚焦于感兴趣区(ROI)非常关键。  安森美的Hyperlux LP 系列图像传感器搭载了WoM功能,可灵活地应用于多个非相邻ROI。这一特性经过精心设计,可大幅降低功耗,显著提升视觉系统在实际应用中的价值。
2024-04-09 11:20 阅读量:253
安森美:储能系统硬件设计与器件选型,这些硬核产品方案速速收藏!
储能系统在建设低碳世界的过程中发挥着关键作用,也是目前最蓬勃发展的工业应用之一,在应用方面与光伏系统和电动汽车充电站密切相关。在爆款文章《关于储能系统设计,你必须要知道的这些干货细节》中,我们介绍了储能市场概况以及系统设计框架,本文则将进一步聚焦储能硬件设计和元器件选型,介绍安森美(onsemi)提供的先进产品和解决方案。解决方案概述三相I-NPC是功率转换系统中常见的双向拓扑结构,以匹配不断增加的母线电压。与三相半桥等两电平拓扑相比,I-NPC需要更多的元器件和驱动信号,复杂的开关方案也对设计者提出了挑战。但其优点是显著降低开关损耗,降低电流纹波,减少EMI等。NXH600N65L4Q2F2是一款包含I-NPC逆变器的高性能650V IGBT PIM。它被设计用来承受两个方向的大电流,最适合100kW以上的商用功率转换系统。去饱和(DESAT)是大功率转换中首选的重要保护措施之一。 它可以通过尽快关闭开关来防止 IGBT/MOSFET 因短路而损坏。NCD57000集成了去饱和检测功能,当VCESAT达到目标值时,内部软关断(STO)MOSFET被激活,放电栅极电容器,以减少由高dV/dt引起的过压应力和损耗。此外,这款单通道栅极驱动器具有高拉/灌电流(4A/6A)、5kVrms电隔离以及其他保护功能,如欠压锁定(UVLO)、有源米勒箝位等。通常,辅助电源的设计基于反激式拓扑结构,使用初级侧调节、QR(准谐振)反激式控制器。NCP1362 是用于低功耗离线 SMPS 的初级侧 PWM 控制器。使用NCP1362 的最大优点是无需光电耦合反馈,从而提高了电源的可靠性。此外,它还能在低 VDS 时关闭开关,从而提高效率并减少发热。初级侧PWM准谐振控制器,NCP1362, SOIC-8封装初级侧准谐振反激控制器无需次级反馈电路谷值锁定准谐振峰值电流模式控制优化轻载效率和待机性能多种保护功能电池储能系统的以太网接口分布式储能系统通常由数百个功率转换系统(PCS)和控制单元组成。现代的控制中心必须适应更为复杂的连接解决方案,以满足日益增长的节点和计算需求。安森美推出的NCN26010是市场上首批符合802.3cg标准的控制器之一,提供以下优势:优秀的抗干扰能力,其噪声抗干扰能力超过IEEE 802.3cg标准要求,能够支持50米以上的通信距离。减少高达70%的线缆使用,并将安装成本降低多达80%减少软件维护成本EliteSiC,1200 V MOSFET,M3S系列新型 1200 V M3S 平面碳化硅 MOSFET 系列针对高温运行进行了优化改善寄生电容,适合高频运行RDS(ON) =22 mΩ @VGS=18 V*超低栅极电荷 (QG(TOT))=137 nC*高速开关,具有低电容特性(COSS =146 pF)*提供开尔文源极连接*点此可了解更多安森美EliteSiC第二代1200 V碳化硅MOSFET M3S系列产品。场截止第七代,IGBT,1200 V新型1200V沟槽型场截止第七代IGBT系列沟槽窄台面与质子注入多重缓冲技术提供快速开关与低饱和压降VCE(SAT)类型改善寄生电容,适用于高频运行通用封装目标应用 - 能源基础设施、工厂自动化IGBT功率集成模块(PIM),I-NPC内置650V / 1000V IGBT / 二极管高工作电流内置负温度系数热敏电阻低电感布局高效及更高的功率密度采用场截止技术的极高效沟槽结构如何选择栅极驱动器电流驱动能力:开关的导通和关断实际上是输入输出电容器的充放电过程。更高的灌电流和拉电流能力意味着更快的导通和关断速度,最终带来更小的开关损耗。故障检测:栅极驱动器不仅用于驱动开关,还能保护开关甚至整个系统。例如,欠压锁定(UVLO)可确保栅极驱动器的电源处于良好状态,去饱和(DESAT)用于检测短路,有源米勒箝位可防止在快速开关系统中出现误导通。点此可阅读NCD(V)57000/57001 栅极驱动器设计笔记,了解保护功能。抗扰性:共模瞬态抗扰度(CMTI)是指栅极驱动器输入和输出电路之间共模电压上升或下降的最大容许速率,它决定了该产品是否可用于快速开关系统。大功率系统以非常快的变化率运行,例如大于100 V/ns时会产生非常大的电压瞬变。隔离栅极驱动器需要能够承受高于额定电平的CMTI,以防止低压电路侧产生噪声,并防止隔离势垒失效。传播延迟:传播延迟是指从输入10%到输出90%的时间延迟(供应商之间可能有所不同)。这种延迟会影响器件之间的开关时序,这在高频应用中至关重要。设置死区时间可以避免直通乃至进一步损坏,死区时间设置得越少,开关损耗就会越小。兼容性:在新项目中,如果没有重大设计变更,引脚对引脚的替换总是首选。选择规格和封装相似的栅极驱动器有利于快速设计。当然,并非每一点都需要遵循。例如,与 IGBT 不同,碳化硅 MOSFET 的输出特性更像可变电阻,没有饱和区,这意味着普通的去饱和检测原理不起作用。作为解决方案之一,通常使用电流传感器来检测过流,或使用温度传感器来检测异常温度。NCP51561 碳化硅隔离栅极驱动器4.5 A/9 A 峰值拉电流/灌电流36 ns 传播延迟,8 ns 最大延迟匹配5 kV 电隔离,CMTI≥200 V/ns双通道设计8毫米爬电距离的SOIC-16WB封装NCD57080 隔离型大电流栅极驱动器高电流峰值输出(6.5 A/6.5 A)欠压锁定(UVLO),有源米勒箝位3.5 kV 电隔离,CMTI≥100 V/ns典型 60 ns 传播延迟单通道设计8毫米爬电距离的SOIC-8WB封装双向AD-DC常用拓扑结构三相全桥变换器电路简单,控制容易且较少元器件开关需承受全母线电压和尖峰电压需要大容量变压器,增加了成本和终端系统尺寸建议使用宽禁带器件以减少总谐波失真(THD)和电感器尺寸单相/三相图腾柱变换器提高效率、减少电磁干扰(EMI)和总谐波失真(THD),并减少每个周期内开关数量开关数量少,功率密度高需要使用宽禁带器件以减少恢复损耗过零点噪声、共模噪声三相三电平变换器三电平配置可降低总谐波失真(THD)和(部分)开关上的电压应力更多的栅极驱动器和更复杂的控制效率更高,成本更高光伏逆变器设计中经过验证的架构双向DC-DC常用拓扑结构升/降压变换器扩大充/放电电压范围,提高电池使用效率在充/放电时实现双向功率转换器件较少,控制简单可根据电池电压选择使用双有源桥变换器运行移相调制,以实现高负载下的零电压开关(ZVS)由于两级中电流的不匹配导致意外损耗移相、变压器、频率等方面的复杂设计以达到预期效率在高频/高压运行中,首选宽禁带元件在大功率情况下减小输出脉动电流以减少输出电容器尺寸隔离转换以确保安全CLLC 谐振变换器在LLC的基础上增加一个电容器以实现双向转换复杂的调频和无源选择,以实现双向高效率 .需要额外的 DC-DC 转换以确保高效情况下达到宽输出范围,在整个负载范围内,效率优于 DAB隔离转换以确保安全
2024-03-27 14:43 阅读量:186
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
型号 品牌 抢购
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。