推动工业领域设备更新,<span style='color:red'>蔡司</span>携三坐标升级改造方案助力企业提质增效
  近日,国务院发布《推动大规模设备更新和消费品以旧换新行动方案》中提到,统筹扩大内需和深化供给侧结构性改革,实施设备更新、消费品以旧换新、回收循环利用、标准提升四大行动。《行动方案》中明确,实施设备更新活动,重点聚焦工业、农业等七大领域,围绕节能降碳、超低排放、安全生产、数字化转型、智能化升级等方向,推进重点行业设备更新改造。  蔡司积极响应设备更新政策号召,提供三坐标测量设备升级改造服务,推动制造企业向高端化、智能化、绿色化发展,助力行业客户发展新质生产力,实现提质增效。  目前,针对已经服役10年甚至20年的蔡司三坐标测量机,蔡司提供ZEISS PerformanceFit焕新性能升级综合改造包。该综合改造包包括一个新节能数字控制系统、一个适用于当前蔡司所有接触式及光学探头的新传感器接口、可节省压缩空气和能源的新集成功能ZEISS AirSaver和ZEISS PowerSaver,以及新外罩。  焕新性能升级套件,全面更新,媲美新机  ZEISS PerformanceFit可将已成功使用多年的旧版三坐标测量机通过改造升级至最新技术标准。改造后的机器更节能、更快速且更可靠,性能显著提高,能源消耗减半,节省大量资源。    ZEISS PerformanceFit的优势  一、 提高生产效率  数字控制系统等新组件以及最新测量软件和新型传感器技术可使测量过程大大缩短,降低故障率,消除故障隐患,从而大大提高设备生产效率。  二、提高能源效率  ZEISS AirSaver和ZEISS PowerSaver 集成功能可节省压缩空气和能源,大大降低三坐标在测量过程中的能耗需求,压缩空气可节省高达70%,能源可节省高达83%。  三、提高应用灵活性  纯接触式蔡司三坐标测量机在升级后可以与最新型的接触式、光学和粗糙度传感器配合使用,从而扩展应用范围。蔡司旋转测座探头还提供数万种测针组合,帮助节省空间。  四、符合高安全标准  用缝隙较小的新外壳替换旧外壳,以及在测量机外壳上安装传感器可确保设备符合最高安全标准和CE标准。一旦有操作者靠近并过于接近测量机,测量机的运动速度自动减慢,操作者无需手动将机器切换到安全模式。  五、节能减排  通过改造20年用龄的三坐标测量机,可使其使用寿命再延长10年。重复使用重型花岗岩和钢制底架,便无需制造或运输此类沉重零件,从而减少约2.6吨二氧化碳排放量,帮助企业实现节能减排的目标。  六、智能管理  升级改造后的三坐标测量设备可完成智能化远程管理,远程维修和设备健康体检。更可匹配自动化技术,优化人员配置,提高安全和生产力。例如搭配SMART BARCODE软件实现自动化测量,匹配机器人,AGV运输车,扫码枪等多种自动化智能化方式实现测量应用的更新。
关键词:
发布时间:2024-05-16 09:15 阅读量:385 继续阅读>>
<span style='color:red'>蔡司</span>:利用纳米探针技术探索半导体微观电学性能
  半导体器件尺寸不断缩小和复杂度增加,纳米探针(Nanoprobing)技术成为解决微观电学问题和优化器件性能的重要工具,成为半导体失效分析流程中越来越重要的一环。  随着功率半导体的快速发展,其厂商也开始密切关注纳米探针技术在PN结特性分析和掺杂区域表征等应用领域。  以下将分享两个典型案例。  利用蔡司双束电镜Crossbeam系列(查看更多)的离子束在SiC MOSFET芯片上加工出一个坡面,把衬底和器件结构暴露出来,然后利用纳米探针和样品表面源极接触,在电子束扫描时收集EBIC信号。  通过二次电子探测器我们得到中间的PVC图像,P well和N+区域有明显的衬度差异,可以表征离子注入区域。而右图中红色的EBIC信号显示了P well和N型外延层之间的边界,即耗尽层。  在另一种常见的功率器件硅基IGBT中,可以得到类似的结果。同样使用蔡司双束电镜Crossbeam系列完成样品制备,在二次电子图像中,N型和P型区域呈现出不同的衬度,而EBIC图像则是显示了各PN结的耗尽层位置,另外也可以看到轻掺杂形成的PN结耗尽层相对较宽。  灵活而高效的EBIC测试可以通过在蔡司场发射扫描电镜(查看更多)上搭载一到两支纳米探针,并配合信号放大器而实现,提供了一种除了扫描电容显微镜(SCM)和电压衬度(VC)成像以外的表征方法,帮助客户了解器件PN结特性和进行离子注入工艺相关失效分析。
关键词:
发布时间:2024-05-06 13:44 阅读量:268 继续阅读>>
三星电子与<span style='color:red'>蔡司</span>合作加强 聚焦EUV技术和半导体设备
<span style='color:red'>蔡司</span>光学课 | 如何用激光共聚焦进行共定位研究
  使用激光共聚焦进行共定位分析,为解决上述困扰提供了合适途径,在提供直观的图像结果同时,给出相应的数值化指标用以评估共定位程度,可以说激光共聚焦架起了视觉判断和定量分析的桥梁。  秘籍总结  • 高图像质量、高分辨率:高数值孔径成像物镜、扫描速度与平均策略是关键,Airyscan超高分辨模式同样提供Buff加成  • 避免串色:采用Best signal顺序采集是关键  • 避免过曝:打开Region Indicator小工具,直观有效判断过曝  • 光切厚度一致:Match Pinhole一键匹配所有通道的光切厚度  • 制备单一标记样本,并在不同样本成像时,Reuse 复用参数  • 数据分析:ZEN软件Colocal工具中“规定Threshold-选定分析ROI-比对共定位参数“三步走  案例分享  此案例所示是一个标记了线粒体内膜蛋白Tom20(绿色荧光)与线粒体外膜蛋白ATP5a(红色荧光)的Cos7细胞样本,在进行Airyscan超高分辨成像后,使用ZEN软件Colocal工具进行共定位分析:  在Colocal界面中,如下工具可以让你事半功倍:  • 形状工具:选定分析ROI,只有针对区域的共定位分析才是有意义的,在此案例中以细胞边界作为参考较为符合目的  • Threshold工具:分割信号与背景的关键  • 伪彩工具:一眼看出“共定位在哪里”,如上图中的洋红色区域  • 图表工具:展示或提取散点图、表格,共定位参数直观可查  最后,基于得到的Pearson系数、Manders系数等,进行共定位程度评估,为揭示蛋白之间的功能关联、mRNA的表达调控作用、药物在机体内的转归与代谢过程提供佐证。
关键词:
发布时间:2024-04-24 11:14 阅读量:351 继续阅读>>
<span style='color:red'>蔡司</span>工业:蓝光扫描技术助力钣金制造
  近年来,汽车行业正在经历翻天覆地的变化,新能源转型,造车新势力不断涌现,智能制造不断深入到生产中的各个环节。如何在传统行业中提质增效?唯有拥抱新技术,拥抱新趋势。  传统钣金行业在工艺上已经相当成熟,但是对于数字化技术的应用更全面的质量控制仍然有提升的空间。  在一个简化的钣金成型方案中,工艺链包括四个主要步骤:产品研发,模具制造,试制和量产。而随着光学测量技术的不断发展,蔡司将光学测量技术和先进的软件技术相互结合,为传统钣金制造行业焕发新的生机贡献力量,可将其应用于钣金产品开发到量产的全生产流程。  在产品开发阶段,通常在一开始会制作一个设计模型,然后将其转换为数字化数据,例如CAD模型。在这个阶段ZEISS ATOS三维扫描仪将用于快速精准的扫描,从而获得逆向工程的数据。通过仿真模拟进行计算和优化从而设计出易于生产的零件。  模具制作阶段,ATOS三维扫描仪可以快速获取大型模具的高精度形面数据,全面的数据不遗漏每一处细节。从模具生产到模具试产试制,减少模具生产中的迭代次数,加速模具优化。经过优化的模具可以快速数字化来确保了在模具使用期间进行的任何更改都有可靠的存档。这种数字化数据还支持直接复制铣削,以取代损坏的模具。  在钣金试制中需要考虑部件本身的尺寸情况和相对于对手件的装配情况。利用扫描数据进行车身部件的三维数据检测和虚拟匹配分析,并可以进一步结合虚拟装夹技术进行产品装配状态预测,降低检具夹具等支出。利用ZEISS ATOS三维扫描仪结合ZEISS INSPECT软件实现对试制过程更快速全面的产品分析。  在产品量产阶段,我们需要掌控部件的生产状态,监控模具和部件的质量,保证其符合性和一致性,同时又需要满足高效率快节奏的生产要求。这就需要使用自动化测量单元,ZEISS ScanBox 以其高效,精准,智能的特点,可以获得更高的吞吐量和更高的可重复性。结合ZEISS ATOS扫描仪可以更加快速地获取部件表面数据,提供整个零件表面、孔、槽、修边和回弹的尺寸检测,以及趋势分析。  蔡司基于其技术创新和研究成果生产和研发引领行业的三维扫描系统。持续不断地开发和提升软件和硬件水平,为您提供完善地三维扫描解决方案。我们的产品广泛应用于工业生产,科研,教育等诸多领域。并将根据您的具体需求为您选择理想的产品和技术方案解决您的测量问题,持续为您提供可靠的技术支持,确保与您共同成功。
关键词:
发布时间:2024-04-08 13:21 阅读量:287 继续阅读>>
<span style='color:red'>蔡司</span> Axiovert 5 :即刻获取研究数据的智能分析方案
  在细胞实验室内,一台好用的倒置显微镜是您最重要的科研助手。它可以帮助您监控细胞状态,拍照记录,并获得初步的研究结果和结论。  效率和质量是实验室工作的关键,常规显微镜操作复杂耗时耗力,重复性难以保证使得数据准确性也打上了问号。现在装载人工智能模块的蔡司倒置显微镜Axiovert 5(查看更多)(以下称蔡司Axiovert 5智能分析方案),帮助您在一键拍照的同时,即刻获取高重复性的研究数据,让实验和研究变得轻松、高效。  即刻获取高重复性细胞实验研究数据  细胞增殖能力是最常见的细胞学检测项目之一,细胞数量则是决定细胞增殖和生存能力的关键值。目前不论是基于细胞计数板的人工计数还是基于细胞计数仪的检测都要经过多个步骤,操作繁琐,且容易引入误差。  蔡司Axiovert 5智能分析方案可以帮助您快速准确的获取实验数据,且具有高准确度和高重复性。您可以在观察细胞时一键获取图像并同时得到细胞定量数据,您还可以拍摄同一样本的多个区域,得到多个数据和平均值,图像和数据都可记录备份。  细胞融合度分析在贴壁培养活细胞的质控、转染时机、细胞迁移、病毒学细胞病变效应等实验中有着至关重要的作用。传统的目测方法来估算细胞融合度,不仅误差比较大,且难以应用于批量实验中,这限制了实验的准确性和效率。  蔡司Axiovert 5智能分析方案不仅以高准确度和重复性为您呈现精确的实验结果,更在细胞观察时一键即可采集图像并实时分析细胞融合度。同时,您还可以轻松拍摄同一样本的多个区域,获取更丰富的数据,并计算出平均值,为实验提供更加全面的参考。  减少工作流程、提升您的工作效率  蔡司Axiovert 5智能分析方案可将AI细胞计数和AI细胞融合度模块无缝融入您的工作流,让您可以始终专注于样品,您在显微镜下检查细胞并移动到合适的位置,此时只需按下拍照按钮,即可采集高清图像并自动进行细胞计数和融合度分析。  ▲ 如何使用蔡司Axiovert 5智能分析方案进行可重复的细胞培养和研究  作者分析了ALDH1 的旁源同系物 ALDH1A1 和 ALDH1A3 活性对小鼠 C2C12 成肌细胞的肌生成的影响,发现两种旁系同源物都是肌原性分化的关键因素,通过协调复杂的视黄酸依赖性和视黄酸独立途径,在肌生成中发挥着至关重要的作用。  研究使用蔡司Labscope AI模块分析各组样本的细胞融合度(蓝色)和细胞数(绿色),发现与对照样本(PM/Ctrl,b)相比,DSF(PM+DSF,b')抑制ALDH1活性和血清撤除诱导C2C12细胞分化(Diff,b''),都导致了融合度的增加和细胞数量的减少。
关键词:
发布时间:2024-03-26 11:01 阅读量:317 继续阅读>>
<span style='color:red'>蔡司</span>辐射损伤智能分析方案
  蔡司辐射损伤智能分析方案提供自动化、智能化的染色体畸变和微核分析方案,为医生评估放射工作人员的慢性辐射损伤提供重要参考依据。  出色的光学性能,呈现清晰、真实的高质量图像  蔡司研究级显微镜Axio Imager.M2 革命性的IC2S色差反差双重校正光学系统,提供优异的成像分辨率及对比度。  采用无盖玻片涂片的专用物镜,获取高清晰染色体和微核图像。  AI优选图像,提升染色体畸变与微核分析准确率  低倍物镜下获取图像,按照国家标准GBZ/T 248-2014自动优选染色体畸变图像,高倍物镜(100X oil)下图像自动居中,并自动聚焦采集最佳图像。  使用20X物镜获取清晰微核图像,并按照国家标准GBZ/T 3288-2023自动优选微核图像。  无需值守,全自动扫描与图像分析  软件界面友好,简单易使用  支持混合扫描,并支持基于玻片号自动调用扫描程序  片仓一次装载量可达120片,实现24h不停歇自动扫描采集高清图像,并同步自动进行染色体畸变或微核分析  自动化和智能化分析方案助您提升检测效率  自动染色体畸变分析图像扫描后同步进行染色体畸变分析,AI识别双着丝粒体(dic)、着丝粒环(r)和无着丝粒断片(f )等。  自动微核分析  图像扫描后同步进行微核分析,AI识别微核细胞,包括常规培养微核法的胞质中含有微核的转化淋巴细胞和 CB 微核法的胞质中含有微核的双核淋巴细胞。  蔡司辐射损伤智能分析方案将高质量成像、自动化扫描和AI图像优选及分析功能相结合,助力医生快速、精准识别畸变的染色体和微核细胞,医生仅需复核筛选结果即可完成检查。此方案推动职业病检查从繁重耗时的任务转变为简单高效的常规操作。
关键词:
发布时间:2024-03-18 17:03 阅读量:555 继续阅读>>
<span style='color:red'>蔡司</span>工业CT:探寻电驱系统逆变器/铸铝转子内部结构的秘密
  一、逆变器装配完成后的内部结构无损检测  1、接插件对插后的无损检测  新能源汽车逆变器的内部结构复杂。PCBA之间的连接通常会涉及到非目视对接以及盲插。内部模块化的逆变器产品一旦装配完成,就无法确认模块内部结构的组装状态。  现阶段,电控企业采取的是通过线下电性能测试来确认模块的功能完善性。EOL电性能测试,只能保证逆变器产品在下线时的功能是否满足要求,却无法保证元器件接触状态是否可靠,依旧可能会存在虚接、错位的风险。  逆变器装配后主要的失效模式有如下情况:  首先,在生产过程中,由于尺寸公差的累加,或者PCBA贴片焊误差,或者PCBA装配后产生形变等一系列生产工艺的变化,都可能让接插件匹配偏离设计,而导致电气连接失效。  如下图中,大电流铜排的公端贴在一块PCBA上,母端贴在另一块PCBA上,再通过盲插将PCBA之间连接起来。这时,所有的接插状态被遮挡,通过常规检测手段无法探测公端和母端之间是否实现了合格的连接。  其次,在焊接时,可能会出现贴片位置不准、盲插插歪了(或者没插上)、插的外力太大,导致母端被撑大等等,以至于公母端接触不良,就可能导致大电流状态下,因铜排接触不良而温度上升。如果工作温度持续超过限定的工作温度,逆变器内部零部件就可能产生失效。  而EOL下线电性能测试,难以发现接触不良这类物理性质的问题,无法覆盖上述相关失效,从而影响产品可靠性。  此外,多合一控制器 PCBA的数量变多,连接端口更多,存在的风险也更高。  为避免以上情况,逆变器组装产线中需要增加逆变器下线后对内部元器件接触状态的无损检测。  蔡司工业CT的解决方案中,不仅可以根据X-RAY的探伤原理将不同原材料的结构件区分开来,更可以使用测量型CT,在做3D探伤的同时,对复杂结构直接进行尺寸测量,从而减少检测工时,同时又避免了因为频繁调整测量基准而带来的尺寸偏差。  2、PCBA电路板、走线、锡焊质量检测  2D X-RAY在逆变器及各个子零件的生产过程中,作为一个探伤检测设备并不少见。但是,随着产品工艺越发复杂,结构越来越繁琐,2D的探伤逐渐无法完全覆盖现在的重要失效模型。故而3D工业CT技术也逐渐被引入产线生产过程中。尤其是断层扫描技术对探测逆变器内部复杂的连接结构有着先天的优势。  集成电路板组装后可能会出现装配缺陷。无损检测可对PCBA板的焊球质量、焊锡缺陷、连接线短路、元器件缺失等进行检测。半导体逻辑器件检测中,有多种材料需要达到很好的衬度,便于区别。同时在失效检查中,需要进行无损检测,避免结构破坏。  蔡司的高分辨率和高精度工业CT可以获取完整的PCB图像,通过重构清晰的三维模型,了解内部缺陷和连接情况;通过高级复合材料伪影缩减(AMMAR),清晰的区分出定位销和塑料;可一次性扫描多样件,通过多样件拆分功能,自动分割成单独体积。  蔡司的高分辨率和高精度工业CT可无损检测PCB内部走线状态,并进行截面分析;元器件焊接后,通过重构清晰的三维模型,了解内部缺陷和连接情况。对每层layer的状态进行确认。  3、PCBA上贴片质量检测  蔡司的高分辨率和高精度工业CT可以对PCBA上的贴片进行多角度扫描,并进行观测。可以快速准确的确认失效元器件的位置和尺寸。  上图中的红色框内为有缺陷的元器件,失效点可以通过测量相关数据信息,供工程师进行判断。  二、异步电机铸铝转子内部缺陷检测  随着高性能电四驱的出现,因异步感应电机的零扭损耗要比永磁同步小,而且两驱变四驱时切换速度快,驾驶感受(NVH)比永磁+断开机构要好,因此异步感应电机已大规模应用于电四驱车辆,尤其是低成本的铸铝转子异步机。  铸铝转子中需要铸造的部分是鼠笼和两侧短路端环,但如果工艺过程控制不当,铸造部分内部会产生气孔、夹渣、裂纹等缺陷。  转子是要高速旋转的,如果铸铝鼠笼或短路端环存在铸造缺陷,且超出标准范围,转子在运行过程中,端环部分就会出现变形、断裂等失效。因此,异步电机对铸铝质量有着很高的技术要求,也就催生了异步机铸铝质量检查的要求。  异步机转子在铸造过程中,从涂层蒸发的气体渗透在熔融金属中,在铸件的表面或内部形成气孔。如果铸铝合金液体中的气体含量过高,则在固化过程中也会形成气孔。  在铸造铝合金凝固过程中,由于温度逐渐降低,金属体积逐渐减小的过程中会产生缩孔。或者无法完全充满铸造腔体,产生缺料。加热过程中,由于厚度不均匀或局部过热,铸件在某个位置缓慢固化,当铸件表面凹入时,体积缩小,产生缩孔。  蔡司高精度工业CT,通过大功率射线穿透查看铸铝转子内部质量情况,可用于测试转子短路端环中孔隙的大小和数量,然后通过ZEISS软件对记录的3D数据进行孔隙度的分析和分类。落地仓门便于上下料,具有测量范围大,长时间工作,性能稳定可靠等特点。  当前电驱市场竞争激烈,尤其是在成本方面,研发工程师们需要不断改进生产工艺模式新技术能够量产落地,也需要不断提升良品率,来保障成本不会大幅度攀升。  此时,电机电控企业的质量控制能力成为胜出的关键要素。需要企业对电机电控产品设计效果、装配尺寸以及制造缺陷等能够清晰掌握,及时发现瑕疵,并在每一步的质量控制上都做到更好。  在电控的研发和生产中,通过光镜和电镜联用技术,对金属异物进行采样分析来实现更佳清洁度检测。通过在产线上安装和设置三维光学测量设备来实现对高接触敏感度元器件来料的无接触式检测,通过CT技术探测逆变器内部复杂的连接结构来发现产品装配完成后的虚接、错位的风险。通过CT铸铝转子的内部缺陷,对开发和生产出高性能和低成本的电机电控产品至关重要。  正所谓“工欲善其事,必先利其器”,更优秀的电驱产品离不开更高效有力的检测工具。蔡司正在积极地探索检测与成像技术,发掘自身的百年积淀,为电驱的性能提升和成本优化,提供着更加“趁手的工具”,为行业发展发挥着更大的促进势能。
关键词:
发布时间:2024-03-15 09:33 阅读量:884 继续阅读>>
<span style='color:red'>蔡司</span>:扁线电机如何打造质量管控的“护城河”?
  一、扁线电机的应用及其优势  随着新能源汽车的快速发展,电驱系统成为了其中最为内卷的部分。新能源车企为了增强整车竞争力,对电驱系统提出了高功率密度、高效率、高压化、高NVH性能、低成本的要求。  在提高效率方面,随着铜满率的提升,在相同的输入电流的情况线下,直流铜损耗更低,可大幅提升电机的效率,尤其是在低速的情况下,可显著提升CLTC工况效率。  在提高功率密度方面,随着铜满率的提升,在保证电机温升的同时,可以输入更多电流,增加电负荷,降低电机的体积和重量,从而提升电机的转矩密度和功率密度。  在高压化方面,扁线电机更能适应高压化。由于扁线的规则排列,首匝和末匝不接触,从而降低了高压击穿的风险。同时在扁线上增加绝缘漆层的厚度要比圆线更为容易,因此适合更高电压的系统。  在舒适度方面,因为扁线电机采用截面积更大的Pin线作为绕组,其绕组刚度要高于圆线绕组,可以改善电机的NVH性能。  在低成本方面,扁线绕组可以实现自动化生产,节约大量人工成本,使生产费用降低。  二、扁线定子工艺流程及检测  扁线电机是相对于圆线电机的一种统称,扁线电机主要的形式有Ipin、Hairpin、Wpin、Xpin等。Hairpin虽然在性能、尺寸上不是最优的,但针对每个技术点Hairpin却是比较好的解决方案,下图就是一款Hairpin绕组的制造工艺:  上述生产工艺过程中,红色框内产品工艺过程的质量控制至关重要。  首先,在扁线绕组制作过程中,对于Pin线的成型、Pin线端部的折弯精度、插线的一致性、装配精度等都有着较为严格的要求。为了提升加工精度,除了高标准的生产设备及原材料,还需要从工艺上加强对产品质量和加工精度的监控。  其次,生产过程中零部件的快速无损检测,是提升产品质量的有效手段。  三、先进的非接触式扁线测量技术  01、扁线定子单Pin质量控制  扁铜线加工需经过校直和去漆等工序。如果扁线表面存在缺陷,就会影响定子绕组的绝缘性能。尤其是在800V电压系统中,更要严加管控扁线绝缘质量。  扁线具有柔性结构和半透明的漆绝缘层,这给靠触觉测量的传统方法带来了很大的挑战。传统的探针或相机传感器无法完美满足测量需求。在此背景下,非接触式光学测量应运而生。  蔡司的DotScan系列,就是采用色阶共聚焦白光探头,来区分透明漆表层和其下方的金属层。并配备有三种探头的尺寸,适用于三种不同的测量范围:10mm 、3mm、1mm。探头可在一次CNC运行期间全自动更换,以适用于不同的表面或改换其他光学探头。关节轴每次可移动一定的角度,将探头调整到垂直于待测部件位置。  02、扁线电机定子及总成全域检测方案  为了保证电机在运行过程中,转矩的变化不破坏定子和壳体的连接,现在主流的设计是定子和壳体采用过盈配合的方式。在此制造工艺过程中,过盈配合对扁线绕组、定子和壳体表面尺寸提出了更高的精度要求。  为了 获取更精确的全域数据,以获得超出图纸要求的产品完整信息,并且可以实现数字化装配,蔡司推出了能够高效获取数据的ATOS三维光学测量系统,这点对于从研发到品控具有更深层的意义。  并且在尺寸测量领域,全域数据在进行形位公差测量的同时,还可以针对被测工件与其CAD 3D模型进行曲面比较。使用后可以通过色差图非常直观地获取产品表面误差信息。  在生产过程中,采用过盈配合工艺,全域数据可以用于过程中的失效分析。通过采集装配失效工件的全域数据,使用软件进行虚拟交叉装配,并模拟应力。这也是当前电驱企业开发和质量控制数字化转型的重点发展方向。  03、扁线定子端部焊球区的缺陷无损检测  和尺寸测量  在扁线电机定子的制造环节中,需要在定子端部把一根根的Pin线焊接起来。焊接都是基于高温熔化的方式,如果工艺参数选择不当,会损伤扁线焊点周围的漆膜,从而导致绝缘漆膜可靠性下降。因此在焊接完成后,需要通过严格的检测来确认扁线焊接的质量。  扁线电机的焊点数量多,要实现稳定检查存在一定的难度。以8层Hairpin定子为例,48个槽,平均每个槽4个焊点,那总共就有192个焊点。如果想要一次性完成检测,设备中负责检测的相机视野范围就要足够大,对光源打光要求也极高。  机器视觉可以对焊接部分进行表面检测,但在焊接缺陷检测上却力有未逮。在焊接过程中,未剥离干净的Pin线绝缘漆或不良的焊接,会导致焊缝的孔隙,进而导致电机性能损失,甚至是完全损坏。所以还需要一种无接触式的非破坏性的数字化检测手段,来实现对焊缝缺陷的检测。  为了破解这个难题,蔡司开始将工业CT应用于扁线绕组焊接缺陷检测。主要是针对扁线的焊球缺陷和绝缘涂覆层的厚度进行无损检测,同时还有针对焊球之间的间距,焊球相对电机主基准系的位置度及焊球是否偏离中心点等。  这里蔡司引入了“全域体素数据”的检测理念,让用户可以首先获得ROI的内构数据,然后同时用于缺陷和尺寸的质量控制。  蔡司工业CT产品METROTOM不仅可以实现对Pin线焊缝的内部孔隙的检测和定位,还能在非破坏性的质量检测过程中,将有缺陷的定子隔离出来。  由于蔡司CT的无损检测和全域数据的技术加持,电机用户就可以非常容易的对比不同工艺参数对电机质量的影响。对绕组的检测结论也更为一目了然。通过这些检测后的数据得到工艺参数调整的最优解,同时也可以对产线上的产品做无损的全域检测。  四、总结  扁线电机以其高效率、高功率密度等特点,在新能源驱动电机中逐渐成为主流技术。  扁线电机的Pin线绝缘、形位公差检测和焊点质量检测在扁线电机生产工艺中占有非常重要的位置。需要更为先进的非接触式和数字化手段来保证扁线电机的质量。  应用先进的检测设备,可有效协助企业进行扁线定子的全方位质量管控,从而促进电机开发和质量管控的数字化进程,建立起质量的“护城河”。
关键词:
发布时间:2024-03-05 11:04 阅读量:1510 继续阅读>>
<span style='color:red'>蔡司</span>:为动力电池行业量身定制的工业CT三维数据分析软件ZEISS INSPECT X-Ray
  动力电池CT数据所包含的缺陷多种多样,目前由于技术原因,缺陷的分析大量依赖人工识别,往往耗时耗力且容易出错。如何高效、准确地识别这些缺陷,并且做到不重不漏是业界公认的难点。  新能源汽车(NEV)的全球市场规模正呈现指数型增长:国际能源署IEA预测,到2030年全球电动汽车数量将增长8倍甚至更多,电动汽车总销量将在2025年超过2000万辆,在2030年超过4000万辆,分别占汽车总销量的20%和30%。由于新能源汽车需求的急剧增加,动力电池需求量也在快速上升,动力电池生产商需要在保证高产品质量的同时不断提高电池产能,以满足来自新能源汽车主机厂的供货需求。  在动力电池的生产中主要使用的电芯成型工艺有叠片和卷绕两种,动力电池同时具有圆柱、方壳、软包等多种电芯类型,不同类型电芯的具体生产过程又有所差异。生产过程中的问题可能导致电池性能下降或安全性问题,带来如金属颗粒、杂质、极片破损、活性物质脱落等大量缺陷,严重影响动力电池产品质量。业内主要动力电池生产商使用蔡司提供的ZEISS INSPECT X-Ray软件,对经由蔡司工业CT发现的大量缺陷进行快速准确的识别与计算。  蔡司工业质量解决方案于近期正式发布了专业三维数据分析软件ZEISS INSPECT X-Ray , 可用于对工业CT发现的动力电池电极缺陷、错位、悬垂、外壳孔隙和颗粒污染进行从采集到定量分析的全 QA 步骤,让微观参数在生产中完成闭环。  动力电池经蔡司工业CT扫描后,即自动生成完整包含动力电池内外部信息的三维数据也就是三维数字孪生。ZEISS INSPECT X-Ray软件可以在三维数据上的任何位置生成二维数字截面图像,客户可手动自由旋转截面上的图像并调节图像的亮度和对比度。通过这种方式,客户可以轻松观察最细微的细节和材料差异,迅速发现电池极片阳极突出部分的对齐度异常区域、电池电芯内部的异物夹杂物或有缺陷的极耳焊接点等缺陷。此外ZEISS INSPECT X-Ray软件也支持对批量扫描的多件样品进行自动分割、对由多种材料及部件组成的样品进行区分和着色等功能。  与此同时,工业CT在动力电池检测中的大规模应用对三维数据分析软件在检测效率和检测多样性的要求也在提高。面对工业CT高频次线边抽检产生的海量数据,市场要求软件在进行诸如计算电极极片对齐度以及识别电池内部异物颗粒等大批量高频次检测任务的时候需要有足够快的检测速度、多维度的检测能力以及全自动的工作流程。针对这一需求,蔡司创造性地把人工智能技术运用于三维数据的分析中。通过应用经深度学习/ 神经网络训练出的模型识别,ZEISS INSPECT X-Ray软件可以自动计算电池每组正负极极片的对齐度,使用色差图的形式展示计算结果,标识对齐度异常极片的位置和数值,自动对比预置的对齐度上下限阈值,判定产品OK/NG状态,并自动生成检测图文报告并上传至MES制造执行系统。  对于有特殊缺陷自动识别需求的客户,蔡司工业质量解决方案支持根据客户需求定制基于三维数据分析软件ZEISS INSPECT X-Ray的特殊缺陷自动识别方案。蔡司拥有正规的定制业务流程、全球化的软件开发力量、本地化的产品应用团队以及丰富的定制项目经验,帮助有需求的客户定制高效可靠的特殊缺陷自动识别方案。  需求确认  确定的具体的缺陷识别要求,包括缺陷类型、公差等  制作需求说明文档  收集的必需数据  可行性研究  在检测目标的指导下制定加检测计划  定制夹具旨在支持可行性研究  对数据进行测试以明确ADR自动识别模型的能力、重复性和准确性  根据客户的需求提案和所需工作量的估算为项目报价  定制夹具  设计完成并经过测试  批量生产夹具  检测设置  使用治具装载尽可能多的样品并进行扫描  收集必须的CAD、图纸和缺陷清单  设置所有检测/尺寸要求并测试软件  部署和调优  部署软件测试环境进行GRR研究,并评估算法性能  重复算法调优流程,直到产生最佳识别结果  现场验收测试  客户查看所有缺陷识别结果  客户认可软件性能并开始使用
关键词:
发布时间:2024-02-26 15:25 阅读量:2104 继续阅读>>

跳转至

/ 11

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。