PCB布线的八个问题

发布时间:2017-04-15 00:00
作者:
来源:与非网
阅读量:8336

一:在小信号电路中一段很短的铜线所具有的电阻一定不重要吧?

答:印制PCB线路板的导电带做得比较宽,增益误差会降低。在模拟电路中通常使用比较宽的导电带为好,但是许多印制线路板的设计者(和印制线路板设计程序)更喜欢采用最小宽度的导电带以便于信号线的布置。总之,在所有可能出现问题的地方,计算导电带的电阻并分析其作用,这是非常重要的。

 

二:前面介绍了有关单纯电阻的问题,的确一定存在一些电阻,其性能完全符合我们的预料。请问一段导线的电阻会怎样呢?

答:情况不一样。你所指的是一段导线或者是起导线作用的PCB线路板中的一段导电带。由于室温超导体至今还没问世,所以任何一段金属导线都起到低阻值电阻器的作用(它也具有电容和电感的作用),这样必须考虑它对电路的影响。

 

三:宽度过大的导电带与印制线路板背面的金属层构成的电容会有问题吗?

答:问题很小。虽然由印制线路板的导电带构成的电容很重要,但总是应该先估算一下。如果不存在上述情况,即使较宽的导电带形成很大的电容也不会带来问题。若带来问题,可去掉一小块接地平面的面积,以减小对地的电容。

 

四:什么是接地平面?

答:假如一块印制线路板的整个一面(或者一块多层印制线路板的整个夹层)的铜箔用来接地,那么这就是我们所说的接地平面。任何地线的排布都要使其具有尽可能小的电阻和电感。倘若一个系统使用一个接地平面,那么它受接地噪声影响的可能性很小。且接地平面具有屏蔽和散热的作用。

 

五:这里所说的接地平面对**厂家来说很困难,对吗?

答:在20年前这方面确实有些问题。今天由于印制线路中的粘结剂、阻焊剂和波峰焊技术的改进使**接地平面已成为印制线路板的常规作业。

 

六:你说一个系统使用一个接地平面使其遭受地噪声的可能性很小,留下来的接地噪声问题还有什么不能解决?

答:尽管有一个接地平面,但是其电阻和电感却不为零,倘若外部电流源足够强,它将影响精密的信号。通过合理地排布印制线路板,使大电流不能流到影响精密信号产生接地电压的区域,这个问题就能减到最小。有时在接地平面上断开或开缝可以使大的接地电流从敏感区域改变流向,但是强行改变接地平面也能使信号绕道进入灵敏区域,所以这样的工艺技术必须小心使用。

 

七:怎样才能知道在一个接地平面上产生的电压降?

答:通常电压降可以测量到,但有时候可以根据接地平面材料的电阻和电流所经过的导电带的长度进行计算,不过计算可能很复杂。在直流到低频(50kHz)范围内的电压可以用仪表放大器。放大器的地假如与其电源地分开,则示波器必须连接到所用电源电路的电源地。led照明接地平面上任意两点间的电阻可以用探头加到这两点上进行测量。放大器增益和示波器灵敏度综合起来可使测量灵敏度达到5μV/div。放大器的噪声将增大示波器波形曲线的宽度,大约为3μV,但还是有可能使测量的分辨率达到约1μV水平,这足够判别大多数接地噪声,并且置信度可达80%。

 

八:高频接地噪声如何测量?

答:使用合适的宽频带仪表放大器测量高频接地噪声是很困难的,所以使用高频和甚高频无源探头较为适当。它由铁氧体磁环(外径为6~8mm)组成,磁环上有两个线圈,每个线圈6~10匝。为了构成一个高频隔离变压器,一个线圈连到频谱分析仪输入端,另一个线圈连到探头。测试方法与低频情况类似,但频谱分析仪用幅频特性曲线表示噪声。这与时域特性不同,噪声源可以根据它们的频率特征很容易进行区别。此外使用频谱分析仪的灵敏度至少比使用宽频带示波器高60dB。


在线留言询价

相关阅读
  The growing complexity of electronic designs is challenging the PCB manufacturing industry to innovate PCB inspection and testing methodologies. To bring out reliable products with maximum yield, a variety of inspection and test methods are employed during the PCB manufacturing process. In-circuit testing (ICT) is used to detect flaws in manufacturing processes and components. It offers high fault coverage and quick test throughput as compared to other available test methodologies. The ICT diagnostic accuracy is exceptional with low incorrect fail rates.  The introduction of the ICT system shifted the focus from the functionality testing of the PCB to the testing of components’ functionality and the integrity of the assembly process. This largely simplified the test pattern generation as the understanding of complex board functionality was eliminated for the programmer. A bed-of-nails test fixture used in the ICT method allows electrical test access to every net on the PCB and enables stimulating and measuring each component independently. This method has significantly reduced the time to generate test vectors and has improved the quality of the test coverage.  Elements of In-Circuit Test:  There are multiple types of ICT machines available in the market. Based on the test process, types of PCBs, and production volume you can choose the machine for your requirement. The basic elements of an ICT machine are as follows:  In-circuit tester: A bed-of-nails used as drivers and sensors that are inserted on pins of the device under test (DUT). They are used to apply voltage and current to the device pins to measure electrical parameters like impedance, capacitance, and resistance of the circuit.  Fixture: A fixture is designed specifically for a PCB and acts as an interface between the board and the In-circuit tester. It connects the test stimulus and monitoring points to the corresponding pins on the board through bed-of-nails.  Software: It is the set of test vectors generated specific to a board based on the type of tests to be done. It also provides control of the test process by collecting data from the probes. A pass or fail criteria is generated and applied while testing the PCBs. Test reports are generated that can assist in troubleshooting the faults.  Apart from the standard ICT machines, there are some advanced variants like Flying probe testers that can accommodate board updates by changing software, Cable form testers optimized to test cables, and Manufacturing defect analyzers that can spot defects like short and open circuits on the printed circuit board assembly.  Faults detected using ICT machines  The test coverage offered by the in-circuit tester is diverse. Manufacturers perform both power-off and power-on tests using ICT machines.  PCB defects detected in power-off mode are:  • Shorts between component pins and traces  • Resistor values  • Missing passive or analog parts  • Correct jumper settings  • Opens with no electrical connectivity  • Lifted leads  • Solder bridge  • BGA shorts and opens  Also, PCB defects captured during power-on mode are:  • Capacitance and inductance values  • Misorientation of mounted analog and digital parts  • Current gain value (beta) of the transistors  • Timing parameters of digital components  • Programming error of memory devices       Merits of in-circuit testing  ICT has made PCB testing easier by offering several advantages as below:  Easy program generation without the need to understand the board functionality has significantly reduced the test development time.  Since the setup can access all nets and component pins of the circuit board, the test coverage is maximum as compared to other PCB test methods.  Minimal scope for operator error as the manual intervention required is limited.  Quick fault detection and simple interpretation of error saves test and debug time for the operator.  Detects both assembly and functional faults of the PCB.  Software can operate on both UNIX and windows OS  Many tests performed in power-off mode provide a safer testing method for PCBs and hence reduced damage.  Once installed, ICT setups require minimal maintenance as they are robust and operate reliably for years.  Development in ICT systems  There are several improvements in the latest ICT systems. The possible erosion of test point access on PCBs, diverse test case requirements for products, and demand for high yield in volume productions are addressed. With the development in test strategies, the In-circuit test method is also progressing to provide excellent test coverage for PCB assemblies.  ICT vendors are offering scalable ICT test systems to satisfy diverse test requirements in a single compatible platform. For addressing high-volume manufacturing requirements, some ICT systems support parallel testing of components on the board. High-accuracy probe-fixturing technologies are available today that can establish smaller yet reliable test points.  The cost of the test fixture is quite high and the profit depends on the build volume. It is more suitable for medium to high-volume PCB production. High board complexity and dimensions will add to the cost as the fixture density and size also increase. But the reliability and test coverage offered by this technique compensates for the other drawbacks.  Compared to the flying probe test method, the In-circuit test is faster. Its ability to test for both assembly and functional defects makes it a better choice in large-volume testing. ICT can perform sophisticated tests specified in the Joint Test Action Group (JTAG) standards. Since the fixtures are built specifically for the test boards, it has to be done only after the PCB layout is finalized. The complexity involved in building the test fixtures calls for a substantial amount of time and money from the overall production budget.  Conclusion  To identify the best test strategy for your PCB assembly, it is necessary that you collaborate with an experienced contract manufacturer. They can offer guidance based on your specific needs with a complete understanding of the test strategies. For prototypes or low-volume PCB assembly, ICT is not recommended. The PCB must be in the production phase with a complete design freeze. It is ideal to build test fixtures for production PCBs since there are no re-spins expected.  Also, to recover the cost of test infrastructure, it is ideal to use ICT in bulk PCB productions.
2023-01-20 13:18 阅读量:1504
  在设计PCB(印制电路板)时,需要考虑的一个最基本的问题就是实现电路要求的功能需要多少个布线层、接地平面和电源平面,而印制电路板的布线层、接地平面和电源平面的层数的确定与电路功能、信号完整性、EMI、EMC、制造成本等要求有关。对于大多数的设计,PCB的性能要求、目标成本、制造技术和系统的复杂程度等因素存在许多相互冲突的要求,PCB的叠层设计通常是在考虑各方面的因素后折中决定的。高速数字电路和射须电路通常采用多层板设计,影响PCB叠层设计的有哪些因素呢?  1、分层  在多层PCB中,通常包含有信号层(S)、电源(P)平面和接地(GND)平面。电源平面和接地平面通常是没有分割的实体平面,它们将为相邻信号走线的电流提供一个好的低阻抗的电流返回路径。信号层大部分位于这些电源或地参考平面层之间,构成对称带状线或非对称带状线。多层PCB的顶层和底层通常用于放置元器件和少量走线,这些信号走线要求不能太长,以减少走线产生的直接辐射。  2、确定单电源参考平面(电源平面)  使用去耦电容是解决电源完整性的一个重要措施。去耦电容只能放置在PCB的顶层和底层。去耦电容的走线、焊盘,以及过孔将严重影响去耦电容的效果,这就要求设计时必须考虑连接去耦电容的走线应尽量短而宽,连接到过孔的导线也应尽量短。例如,在一个高速数字电路中,可以将去耦电容放置在PCB的顶层,将第2层分配给高速数字电路(如处理器)作为电源层,将第3层作为信号层,将第4层设置成高速数字电路地。  此外,要尽量保证由同一个高速数字器件所驱动的信号走线以同样的电源层作为参考平面,而且此电源层为高速数字器件的供电电源层。  3、确定多电源参考平面  多电源参考平面将被分割成几个电压不同的实体区域。如果紧靠多电源层的是信号层,那么其附近的信号层上的信号电流将会遭遇不理想的返回路径,使返回路径上出现缝隙。对于高速数字信号,这种不合理的返回路径设计可能会带来严重的问题,所以要求高速数字信号布线应该远离多电源参考平面。  4、确定多个接地参考平面(接地平面)  多个接地参考平面(接地层)可以提供一个好的低阻抗的电流返回路径,可以减小共模EMl。接地平面和电源平面应该紧密耦合,信号层也应该和邻近的参考平面紧密耦合。减少层与层之间的介质厚度可以达到这个目的。  5、合理设计布线组合  一个信号路径所跨越的两个层称为一个“布线组合”。最好的布线组合设计是避免返回电流从一个参考平面流到另一个参考平面,而是从一个参考平面的一个点(面)流到另一个点(面)。而为了完成复杂的布线,走线的层间转换是不可避免的。在信号层间转换时,要保证返回电流可以顺利地从一个参考平面流到另一个参考平面。在一个设计中,把邻近层作为一个布线组合是合理的。如果一个信号路径需要跨越多个层,将其作为一个布线组合通常不是合理的设计,因为一个经过多层的路径对于返回电流而言是不通畅的。虽然可以通过在过孔附近放置去耦电容或者减小参考平面间的介质厚度等来减小地弹,但也非一个好的设计。  6、设定布线方向  在同一信号层上,应保证大多数布线的方向是一致的,同时应与相邻信号层的布线方向正交。例如,可以将一个信号层的布线方向设为"Y轴”走向,而将另一个相邻的信号层布线方向设为“X轴”走向。  7、采用偶数层结构  从所设计的PCB叠层可以发现,经典的叠层设计几乎全部是偶数层的,而不是奇数层的,这种现急是由多种因素造成的,如下所示。  从印制电路板的制造工艺可以了解到,电路板中的所有导电层救在芯层上,芯层的材料一般是双面覆板,当全面利用芯层时,印制电路板的导电层数就为偶数。  偶数层印制电路板具有成本优势。由于少一层介质和覆铜,故奇数层印制电路板原材料的成本略低于偶数层的印制电路板的成本。但因为奇数层印制电路板需要在芯层结构工艺的基础上增加非标准的层叠芯层黏合工艺,故造成奇数层印制电路板的加工成本明显高于偶数层印制电路板。与普通芯层结构相比,在芯层结构外添加覆铜将会导致生产效率下降,生产周期延长。在层压黏合以前,外面的芯层还需要附加的工艺处理,这增加了外层被划伤和错误蚀刻的风险。增加的外层处理将会大幅度提高制造成本。  当印制电路板在多层电路黏合工艺后,其内层和外层在冷却时,不同的层压张力会使印制电路板上产生不同程度上的弯曲。而且随着电路板厚度的增加,具有两个不同结构的复合印制电路板弯曲的风险就越大。奇数层电路板容易弯曲,偶数层印制电路板可以避免电路板弯曲。  在设计时,如果出现了奇数层的叠层,可以采用下面的方法来增加层数。  如果设计印制电路板的电源层为偶数而信号层为奇数,则可采用增加信号层的方法。增加的信号层不会导致成本的增加,反而可以缩短加工时间、改善印制电路板质量。  如果设计印制电路板的电源层为奇数而信号层为偶数,则可采用增加电源层这种方法。而另一个简单的方法是在不改变其他设置的情况下在层叠中间加一个接地层,即先按奇数层印制电路板布线,再在中间复制一个接地层。  在微波电路和混合介质(介质有不同介电常数)电路中,可以在接近印制电路板层叠中央增加一个空白信号层,这样可以最小化层叠不平衡性。  8、成本考虑  在制造成本上,在具有相同的PCB面积的情况下,多层电路板的成本肯定比单层和双层电路板高,而且层数越多,成本越高。但在考虑实现电路功能和电路板小型化,保证信号完整性、EMl、EMC等性能指标等因素时,应尽量使用多层电路板。综合评价,多层电路板与单双层电路板两者的成本差异并不会比预期的高很多。
2022-12-22 16:54 阅读量:1584
    PCB 设计过程是由一系列工业设计步骤组成,是保证大批量电路板产品质量、减少故障排查的关键环节。PCB 是工业电子产品设计的基础。无论是小批量制作,还是大规模生产的消费电子,几乎所有的设计技术中都包含有 PCB 设计。由于设计过程错综复杂,很多常见的错误会反复出现。下面罗列出在 PCB 设计中最常见到的五个设计问题以及相应的对策。    01 管脚错误    串联线性稳压电源比起开关电源更加便宜,但电能转效率低。通常情况下,鉴于容易使用和物美价廉,很多工程师选择使用线性稳压电源。但需要注意,虽然使用起来很方便,但它会消耗大量的电能,造成大量热量扩散。与此形成对比的是开关电源设计复杂,但效率更高。然而需要大家注意的是,一些稳压电源的输出管脚可能相互不兼容,所以在布线之前需要确认芯片手册中相关的管脚定义。    02 布线错误    设计与布线之间的比较差异是造成 PCB 设计最后阶段的主要错误。所以需要对一些事情进行重复检查,比如器件尺寸,过孔质量,焊盘尺寸以及复查级别等。总之需要对照设计原理图进行重复确认检查。    03 腐蚀陷阱    当 PCB 引线之间的夹角过小(呈现锐角)的时候就可能形成腐蚀陷阱(Acid Trap)。这些锐角连线在电路板腐蚀阶段可能残存腐蚀液从而将该处的敷铜更多的去除,从而形成卡点或者陷阱。后期可能造成引线断裂,形成线路开路。现代制作工艺由于使用了光感腐蚀溶液之后,这种腐蚀陷阱现象大大减少了。    04 立碑器件    在利用回流工艺焊接一些小型表贴器件的时候,器件会在焊锡的浸润下形成单端翘起现象,俗称“立碑”。这种现象通常会由不对称的布线模式造成,使得器件焊盘上热量扩散不均匀 。使用正确的 DFM 检查可以有效缓解立碑现象的产生。    05 引线宽度    当 PCB 引线的电流超过 500mA 的时候,PCB 最先线径就会显得容量不足。通常的厚度和宽度,PCB表面的导线比起多层电路板内部导线通过更多的电流,这是因为表面引线可以通过空气流动进行热量扩散。线路宽度也与所在层的铜箔厚度有关系。大多数 PCB 生产厂家允许你选择 0.5 oz/sq.ft 到 2.5 oz/sq.ft 不同厚度的铜箔。
2022-10-26 09:35 阅读量:1822
    时钟(Clock)在一般SoC电路上是必不可少的,精准的时钟通常由晶振提供,晶振很难集成到芯片中去,而是作为分立元件设计在PCB上。它就像是人的心脏,如果时钟出错了,整个电路或者通信就会发生问题。    比如,16MHz晶振给一个2.4G蓝牙芯片提供参考时钟,如果16MHz出现频偏,比如偏-48ppm(频率为15.999223MHz),由于射频是参考时钟倍频上去的,也会出现-48ppm的频偏(蓝牙频点变成2,399,883,450Hz,约100KHz的频偏),造成蓝牙与标准频率的对端无法通信。    因此一个好的时钟电路是非常必要的,此篇文章对时钟电路中的晶振电路layout简单做一下阐述。    对于晶振电路,我们需要从几个方面考虑设计:    降低寄生电容的不确定性    降低温度的不确定性    减少对其他电路的干扰    设计注意点:    1. 晶振尽量靠近芯片,保证线路尽量短,防止线路过长导致串扰以及寄生电容。    2. 晶振周围打地孔做包地处理。    3. 晶振底部不要走信号线,尤其是其他高频时钟线。    4. 负载电容的回流地要短。    5. 走线时先经过电容再进入晶振。    下面分别举例贴片无源晶振及有源晶振的走线方式:    两脚贴片无源晶振    6.    封装较大,可从晶振中间出线。    7.    如果有测试点,使stub尽量短。    8.    走线可以走成假差分形式。尽量走在同一层。    9.    部分晶振底下需要做掏空处理,以防电容效应以及热效应造成频偏。    10.  如果是铁壳晶振,外壳做接地处理,提高抗干扰能力。    11.  晶振选型需要选工作温度达到125摄氏度及以上的。    四脚贴片无源晶振    HTOL测试板上有源晶振的布局:    由于老化测试中一般芯片都在socket中测试,所以晶振不能与Socket放置在同一面,否则晶振会距离芯片较远。    晶振放在反面则需要打孔后连接至芯片管脚,此时需要在打孔附近增加回流地孔。    贴片有源晶振
2022-06-30 09:32 阅读量:2170
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
TPIC6C595DR Texas Instruments
CD74HC4051QPWRQ1 Texas Instruments
PCA9306DCUR Texas Instruments
TXB0108PWR Texas Instruments
TPS5430DDAR Texas Instruments
型号 品牌 抢购
TPS61256YFFR Texas Instruments
TPS5430DDAR Texas Instruments
TPS61021ADSGR Texas Instruments
TPS63050YFFR Texas Instruments
TXS0104EPWR Texas Instruments
ULQ2003AQDRQ1 Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。