AI芯片市场火爆,IC设计服务厂商竞争力浅析

发布时间:2017-05-26 00:00
作者:
来源:DIGITIMES
阅读量:287


四月初Google公布其使用客制化ASIC设计的TPU测试报告,性能及功耗都远远胜过市场上的CPU/GPU组合(注1),非常适合人工智能及深度学习的运算。报告公布之后网上就有很多相关讨论,也有一些朋友问我,IC设计服务公司可否进入AI芯片市场?回答我的看法之前,让我先简单交代一下IC设计服务市场的演进。

在晶圆代工模式尚未诞生之前,IC产品主要来自IDM,当时的IDM都有自己内部标准产品(ASSP),从规格订定、设计、到制造、封测全在内部完成。而不少的IDM也对外提供客制化的芯片设计(ASIC) ,如当时的IBM、TI、LSI、VLSI Technology、STM、NEC、Toshiba等等,从商业模式来看,IDM的ASIC业务也算是一种设计服务。1987年台积电率先提供晶圆代工服务之后,无晶圆厂(fabless) 的IC产品公司才像雨后春笋般的冒出来,相关的生态链包括IP、EDA、IC设计服务产业随后也因应而生。


AI芯片市场火爆 IC设计服务厂商竞争力浅析


由于IC设计服务公司提供共享的设计资源(注2)给很多初期不需要自己投资建构内部团队的新创IC产品公司以节省资金,并快速推出产品进入市场,一时之间忽然变成需求很高的产业。再加上受到全球第一家设计服务公司智原在1999年挂牌上市的激励,新创的IC设计服务公司在那几年全球成立超过30家,有的主打特定晶圆厂,有的则强调支持多个晶圆厂甚至可以协助厂与厂之间的转换(porting)。设计服务产业没过多久就供过于求,市场竞争转趋激烈。

随著Moore’s law演进,制程愈趋复杂,芯片集成度亦随之倍数成长,产品的性能及功耗规格要求也更加严厉,设计公司除了人力/物力/投资成本遽增之外,技术挑战及产品失败的风险也相对提高很多。经过几代制程的演进之后,自然淘汰了一些较弱的竞争者,留在场里的选手也大致有些分级并各有定位,呈现较为健康的竞争态势。到了16纳米及以下的节点(目前到7纳米),更高的技术门槛不但隔绝了一些竞争者,也让较优质的IC设计服务公司增加了不少从系统公司甚至IC产品公司委外设计机会。专业先进的IC设计服务公司在晶圆代工生态链的地位,越高阶制程就越重要,市场竞争优势也就越明显。

这两年火红的应用如AR/VR、云端运算(大数据分析)、人工智能及深度学习,甚至比特币都需要高性能及低功耗的芯片。大型的系统公司、数据中心、互联网平台等公司渐渐不用市场上标准芯片(ASSP),而倾向自己开发客制芯片(ASIC),一来以满足其性能及功耗的需求,二来与其竞争者作差异化。Google TPU就是一个明显的例子。这种趋势更增加了IC设计服务领导厂商的机会。

IC设计服务产业因需求而诞生,又因过度供给竞争激烈而汰弱存强,走了20个年头,这个产业现在正迈入一个比较健康的供需市场而逐渐茁壮。

本篇为作者个人所观察的产业趋势,跟所担任顾问的公司无关。

注1:Google 云端平台博客:Quantifying the performance of the TPU, our first machine learning chip

注2:设计服务的分享资源定义上不属于最近所谓的分享经济。其资源并非闲置,模式为B2B,且非经过交易平台做资源分配,就象是半导体客户共享台积电或日月光的技术与产能资源一般。

在线留言询价

相关阅读
7月17日消息, 寒武纪昨日晚间发布公告,公司将于2020年7月20日在科创板上市,发行4010万股,发行价为64.39元。6月2日上交所披露,国内AI芯片独角兽公司中科寒武纪科技股份有限公司科创板首发过会。7月6日晚,寒武纪公告,确定科创板发行价格为64.39元/股。7月7日,寒武纪完成网上路演。7月8日,投资者将进行网上、网下申购。此次募集资金25.8亿元。此前寒武纪曾披露申请科创板上市拟融资28.01亿元,19亿元用于新一代云端训练芯片、推理芯片、边缘人工智能芯片及系统项目,9亿元用于补充流动资金。实际募资不及预期。据了解,寒武纪战略配售投资者包含中信证券、联想北京、美的控股、OPPO移动、中证投资。财务数据显示,公司2017年-2019年营收分别为784.33万元、1.17亿元、4.44亿元;同期亏损金额分别为3.81亿元、4104.65万元、11.79亿元,三年亏损超16亿元。寒武纪由陈天石、陈云霁于2016年创办,二人均毕业于中科大少年班,寒武纪股东背景强大,阿里创投、科大讯飞、湖北联想、中科图灵、国新资本、中科院创投等皆位列其股东席。寒武纪主打各类智能云服务器、智能终端以及智能机器人的核心处理器芯片,并拥有终端AI 处理器 IP 和云端高性能 AI 芯片两条产品线,成“端云一体化”模式。据此前披露的信息,寒武纪新一代7nm云端智能芯片思元290预计2021年将形成规模化收入,边缘智能芯片思元220及相关加速卡预计在2020年内实现规模化出货。就在这周,国内企业级混合云服务商青云QingCloud宣布与寒武纪达成战略合作,青云QingCloud旗下光格网络在其SD-WAN终端光盒里内置寒武纪思元220边缘端芯片。 
2020-07-17 00:00 阅读量:346
特尔的主场是 PC,高通的主场是移动互联网,AI 会是谁的主场?2016 年,AlphaGo 打败李世石是 AI 的成名之战,从此一发不可收拾,AI 一夜间变成了所有终端的“刚需”,产品只有加载了 AI 功能才有卖点。随后终端设备厂商迅速拉开了 AI 入口抢夺大战,经过一番角逐,智能音箱取得了阶段性胜利。Strategy Analytics 的数据显示,2017 年智能音箱全球出货 3200 万台,2018 年出货量增长到 8620 万台。 但是,随着终端设备向 AI 演进,AI 需求碎片化严重,不同的设备对 AI 的算力需求不尽相同,原有的通用架构芯片难以一一全部覆盖。随着 AI 算法的接入,尤其是针对深度学习,不管是 CPU、GPU、FPGA,还是异构架构,都无法满足终端设备需要的并行计算能力和更高存储带宽,AI 专用芯片在计算密度和功耗上有绝对的优势。 国内厂商争相入局,自研 AI 芯片热情高涨2017 年是 AI 技术的快速推进之年,也是 AI 芯片的爆发年,国内多家厂商纷纷入局 AI 芯片市场,在终端设备的各种应用里都出现了对应的 AI 芯片,“让专业的产品做专业的事情”成为业内的共识,只有 AI 芯片才能更好地实现 AI 功能。 其中,云知声针对 IoT 交互场景推出了 AI 芯片 -- 雨燕,比特大陆针对张量计算加速推出了算丰 Sophon BM1680,地平线针对智能驾驶和智能摄像头分别推出了征程 1.0 和旭日 1.0。华为发布了麒麟 970,该芯片中首次内置了神经元网络单元(NPU)以完成人工智能计算。  虽然发布 AI 芯片的公司不是很多,但是 2017 年国内的 IC 设计公司已经增长到了 1600 多家,很多公司都在追赶 AI 的热潮,准备进军 AI 芯片市场。 国内 AI 芯片市场的盛宴期时间转到 2018 年,AI 热潮正旺,又恰巧遇上了中兴事件,国产芯片被捧上热搜的同时,AI 芯片市场的发展也迈向高潮,传统芯片巨头和初创公司都开始积极展开布局。百度发布了 AI 芯片 -- 昆仑,号称基于百度 CPU、GPU 和 FPGA 加速器,经过长达 8 年的研发,通过 20 多次的迭代才推出,定位是一款云端全功能 AI 芯片;华为发布了昇腾 310 和昇腾 910,均采用华为自研的达芬奇 AI 架构,覆盖了 AI 推理和 AI 训练,定位是全球第一个覆盖全场景的人工智能 IP 和芯片系列,具备横跨云、边缘、端全场景的最优能效比,并且提出做全栈和全场景 AI 解决方案,决定要“通吃”AI 产业链。  对于终端厂商来说,似乎只有发布一款 AI 芯片才能证明公司的技术实力和自己的产品特色。一直研发终端产品的出门问问和 Rokid 也加入了这场 AI 芯片大战。2018 年,出门问问发布了两款 AI 芯片 -- 问芯 Mobvoi A1 和问芯 Mobvoi B1,Rokid 发布了 KAMINO18,而且两家公司都是与杭州国芯科技合作开发的产品。杭州国芯科技于 2017 年 10 月发布了 AI 芯片 GX8010&GX8008,具有数字信号处理器 DSP、神经网络处理器 NPU,以及 USB/IIS/IIC/UART 等标准接口。出门问问表示,问芯针对人工智能和物联进行了深度的优化,让各种物联网设备具备低功耗、强离线的 AI 能力。 Rokid 创始人兼 CEO Misa 明确表示,“现在的芯片基本是 SoC,而 SoC 里面有 90%的东西都是很成熟的,Rokid 没有必要花精力去做各类 IP,我们关注的是如何利用现有的 IP 来进行组合,如何融入 Rokid 的算法,如何在 SoC 架构层面进行优化。Rokid 不通过芯片赚钱,我们不直接单独卖芯片,Rokid 做芯片也不是以做芯片为出发点的,只是因为市面上没有我们需要的,所以我们来做。”另外,由于 Rokid 有自己的终端设备,KAMINO18 发布之时就已经拿到了百万片的订单,能够设计 AI 芯片显然成为了 Rokid 的一大亮点。 AI 芯片的这股热潮也拉动了资本市场的活跃,在 2018 年多家 AI 芯片公司拿到了融资,寒武纪获得数亿美元 B 轮融资,云知声获得 6 亿人民币 C+轮融资,思必驰宣布获得 5 亿人民币融资同时宣布推动 AI 芯片等的落地,地平线宣布将完成新一轮 5-10 亿美元的融资(实际在 2019 年完成 6 亿美金融资)。 AI 开始退热,AI 芯片厂商何去何从?有潮起就有潮落,经过 2018 年的狂欢,2019 年投资者这对 AI 投资变得更加冷静,加上国际贸易环境和半导体市场的不乐观,AI 芯片创业者面临巨大挑战。投资人更看重创业公司的落地能力,他们将 AI 芯片公司分为两类,一类是有一定规模的公司,一类是初创公司。他们认为,前者可以在已有的体系里,结合客户的需求引入 AI 芯片,产品更容易落地;但是,初创公司缺乏落地应用,而且芯片设计成本很高,加上芯片的量产周期比较长,只能靠融资维持,一旦资金链断裂,难以为继。  从新品的发布可以看出,2019 年前九个月只有阿里平头哥高调发布了含光 800,主要应用于 AI 推理;比特大陆的算丰 BM1682 并没有进行大张旗鼓地宣传;紫光展锐发布的虎贲 T710 和虎贲 T618 不是 AI 专用芯片,只带有 AI 功能,AI 芯片市场已然进入寒冬期。 总结2017 年,智能音箱的井喷式增长吸引了众多芯片公司的目光,语音应用场景的爆发带动了 AI 专用芯片的加速崛起,并以语音市场为节点向更多应用市场蔓延;2018 年,国内厂商 AI 造芯热情达到高潮,国内有 1600 家公司开始关注 AI 芯片市场,但是真正落地的应用主要集中在智能手机、智能语音控制和视频分析;2019 年,AI 开始退热,AI 芯片市场开始挤泡沫,只有资金和技术都准备充足的公司才更容易走下去。 随着 AI 应用场景的不断细分,终端厂商必然更喜欢选择对应的 AI 专用芯片,突出自己的产品特色,AI 芯片应用前景依然看好。未来的市场走势可以归纳为以下几点: 第一,AI 算法的实现需要依赖于芯片,而不同的算法对于芯片的需求也是不同的,对于特定算法,专用型的 AI 芯片的加速要远远优于通用型芯片,因此越来越多终端厂商开始研发 AI 芯片,更好地满足自身产品需求; 第二,AI 专用芯片针对性更强。从这三年中发布的产品可以看出,地平线的产品针对自动驾驶和视觉分析,出门问问和 Rokid 针对智能语音控制,百度和阿里针对云端计算,以后会出现更多专用 AI 芯片; 第三,在市场开拓方面,从终端产品延伸到 AI 芯片研发相对容易,既能保证应用的落地,又能突出产品特色。例如:出门问问和 Rokid 针对智能语音产品研发的 AI 芯片,弥补了通用芯片的不足,突出了自身语音产品的优势; 第四,互联网巨头必然走上 AI 造芯之旅,百度、阿里发布基于自有架构的 AI 芯片就是最好的佐证,毕竟一般公司开发的产品难以覆盖这些巨头公司的应用需求。
2019-10-23 00:00 阅读量:281
今天的杭州阿里云栖大会上,阿里巴巴旗下平头哥半导体公司正式发布了阿里巴巴首款正式流片的芯片——含光800,这是一颗云端AI芯片,主要应用于云端视觉处理场景,打破了现有最强AI芯片的记录,性能以及能效比都成为全球第一。  据官方数据显示,在业界标准的芯片测试平台ResNet-50测试中,获得了78563 IPS的性能分,是业界第二名分数的5倍之多!能效比达到了500 IPS/W,是第二名的3.3倍。  为何含光800能做到世界第一?  与传统的CPU、GPU不同,含光800是一款AI芯片。而对于AI芯片,目前针对使用环节的不同,可以分为训练和推理两个阶段,前一阶段的芯片主要由英伟达、英特尔等老牌半导体厂商所提供,而如今半导体创业公司大多将目光指向推理阶段,而含光800的侧重点就在于推理性能。  因为传统的CPU与GPU在设计之初就针对不同的应用而进行了优化,如GPU主要侧重图形处理,这也使得GPU对于AI任务处理效率并不高。含光800之所以能够在性能上取得突破,软件层面上还得益于阿里巴巴达摩院在AI算法方面的成果,以及阿里所具有的天然平台生态优势;硬件层面上,平头哥的自研芯片架构,针对深度学习的需求,优化了卷积、矩阵乘法、向量计算等性能,有效解决了芯片的性能瓶颈问题。平头哥与达摩院的深度合作,成功做到了软硬件高度协同,而这也正是市面上许多AI芯片所缺乏的。  AI芯片不再是纸上谈兵,阿里助力“含光”落地  近年AI行业的兴起,使得AI芯片初创公司遍地开花。但从目前的普遍现状来看,不少公司仅是单纯设计出了一款芯片,算力是有了,但实际应用在什么场景却并没有给出确切的愿景以及目标。当然,以小规模初创公司的实力,能够做到一定规模的实际应用落地确实比较困难。但对于阿里巴巴而言,其本身的软件实力和庞大的生态链,为平头哥扫清了芯片应用落地的阻碍。  据编者了解,含光800目前已被应用到阿里巴巴旗下的的多个业务场景,比如图像视频分析、城市大脑、搜索优化等等。同时,含光800还将通过阿里云服务对外输出AI算力,而对比起传统的GPU的云计算服务,将会有100%的性价比提升。  今年下半年以来,阿里的造芯计划似乎踏上了超车道。 7月25日,平头哥发布基于RISC-V架构的玄铁910处理器,号称是业界性能最强的RISC-V处理器,并全面向开发者开放其IP核,不过玄铁910并没有流片量产。8月29日,平头哥又发布了全新的SoC芯片设计平台“无剑”,打造面向AIoT时代的一站式芯片设计平台,提供集芯片架构、基础软件、算法与开发工具于一体的整体解决方案。宣称可以帮助芯片设计公司,将芯片设计成本降低50%,与此同时,还能降设计周期缩短50%。  显然,随着含光800的出现,阿里平头哥端云一体全栈产品系列已初步成型。不过,自主芯片实现流片仍只是平头哥在未来AIoT生态建设踏出的关键一步。作为互联网巨头的阿里,初期可以依靠内部需求来逐渐完善芯片,但要在AIoT赛道上保持领先,还需要获得国内外厂商的支持。毕竟,“让天下没有难做的生意”,是阿里仍旧所需要遵循的理念。
2019-09-26 00:00 阅读量:320
在接下来的几年里,芯片制造商巨头和资金雄厚的创业公司将瓜分专业AI芯片的市场份额。在计算密集型的人工智能领域,硬件供应商正在以摩尔定律高峰期的性能提升速度不断推陈出新。这种提升来自于针对深度学习等人工智能应用的新一代专用芯片。但是,人工智能芯片市场正在出现的支离破碎化将让开发商面临一些艰难抉择。  将芯片专门针对人工智能应用而定制的新时代始于最初为游戏应用开发的图形处理单元被部署用于深度学习等应用。让GPU渲染逼真图像的同一个架构可以比中央处理单元(CPU)更为有效地处理矢量数据。2007年,英伟达发布了CUDA,这是一个支持GPU以通用方式编程的工具包,这是GPU发展过程中的重要一步。 在处理深度学习这种前所未有的高性能计算要求时,人工智能研究人员需要利用力所能及的所有优势。在人工智能的推动下,GPU的处理能力迅速发展,最初设计用来渲染图像的GPU反过来又成为了推动可以改变世界的人工智能研究和开发的主要力量。为了让Fortnite这种图像渲染工具可以以每秒120帧的速度运行,需要实现诸多线性代数运算,现在,同样这些运算被部署在了计算机视觉、自动语言识别和自然语言处理等前沿应用核心的神经网络中。 现在,人工智能芯片专业化的趋势正在演变成一场军备竞赛。据Gartner预计,人工智能专用芯片的销售额将在2019年翻一番,达到80亿美元,到2023年时这一数字将增长到340亿美元。在英伟达的内部预测中,到2023年时数据中心GPU市场(几乎全部用于深度学习)规模将达到500亿美元。在接下来的五年中,亚马逊、ARM、苹果、IBM、英特尔、微软、英伟达和高通将在人工智能专用芯片上展开大量投资。参加军备竞赛的除了这些芯片巨头外,还包括一些创业型公司。据CrunchBase估计,包括Cerebras,Graphcore,Groq,Mythic AI,SambaNova Systems和Wave Computing在内的AI芯片公司已经筹集了超过10亿美元的投资。 需要说明的是,专用AI芯片是将前沿AI研究迅速转化成实际应用的催化剂,所以它很重要,也颇受欢迎。但是,大量新出现的AI芯片,一个比一个快,一个比一个专业,似乎会限制企业软件的崛起。我们可以预计,这些AI芯片公司会进行低价促销,并进行软件的专业化,以将开发人员锁定在只跟一家供应商合作。 试想一下,如果说15年前,云服务AWS,Azure,Box,Dropbox和GCP都会在一年到一年半之内上市,它们各自的任务就是锁定尽可能多的企业客户,所谓锁定是指你一旦选定了一个平台,就很难将自己的技术投资切换到另一个平台上。这种情况将发生在AI专用芯片领域,从而使得大量投入了巨资的研究都受到威胁,因为客户很难从别的平台转移到你的平台上来。 芯片制造商们肯定会向开发人员做出一些美好的承诺,而且基本上可以兑现。但是,对于AI开发人员来说,重要的是,即使其它供应商搭载了新架构的新芯片的性能更快,也很有可能会拖慢自己将产品推向市场的速度。在大多数情况下,AI模型无法在不同的芯片制造商的器件之间进行移植。所以,开发人员必须将供应商通过专用AI芯片和专业软件将自己锁牢的风险牢记在心,在过去,实际的计算引擎都已经标准化而且同质化,所以移植很方便,可以自由地在不同供应商之间切换。但是现在,在人工智能开发领域,这种情况将发生巨大变化。 将来的芯片产业很可能有超过一半营收都来自于人工智能和深度学习等应用,就像软件能够产生更多的软件一样,AI也会催生更多的AI。我们已经多次看到了这种衍生效应:公司一开始专注在一个问题上,但是最终却解决了很多问题。比如,大型汽车制造商们正在努力实现自主驾驶,他们在深度学习和计算机视觉方面开展的前沿性工作产生了连锁效应,其研究成果可以应用在福特的送货机器人等分支性项目中。 随着专用AI芯片陆续上市,目前的芯片制造商巨头和大型云服务公司可能会锁定一些客户,和他们达成独家协议,或者由于很难争取客户而只能收购那些表现出色的创业公司。AI芯片专用化的趋势将会让AI市场变得支离破碎,而不是使之趋于大一统。对于人工智能开发人员来说,现在可以做的就是,了解这个行业的发展趋势,并做些规划,权衡更快的芯片带来哪些好处,同时又带来多大的开发难度,以及在新架构上设计自己的产品的成本如何。
2019-08-14 00:00 阅读量:319
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
PCA9306DCUR Texas Instruments
TL431ACLPR Texas Instruments
TXB0108PWR Texas Instruments
TPS5430DDAR Texas Instruments
TPS61021ADSGR Texas Instruments
CD74HC4051QPWRQ1 Texas Instruments
型号 品牌 抢购
TPS61021ADSGR Texas Instruments
TPS61256YFFR Texas Instruments
ULQ2003AQDRQ1 Texas Instruments
TXS0104EPWR Texas Instruments
TPS5430DDAR Texas Instruments
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。